A Study of the Sensitivity of Parameters Affecting Coated Tool Life in High Speed Milling Superalloy GH4169

2013 ◽  
Vol 651 ◽  
pp. 436-441
Author(s):  
Wei Wei Liu ◽  
Xu Sheng Wan ◽  
Yuan Yu ◽  
Feng Li ◽  
Hao Chen

Through the orthogonal test of the TiALN coated carbide tool high-speed milling of high-temperature alloy GH4169, the empirical formula of the tool life are acquired by using multiple linear regression method. On the basis of this formula, studying the absolute sensitivity and relative sensitivity of TiALN coated carbide tool life for milling speed, depth of cut and feed; The results showed that in the process of high-speed milling of high-temperature alloy GH4169, tool life decreased with the increase of milling speed, feed and depth of cut; tool life is most sensitive to the change of milling speed; change of feed take second place and milling depth is the least sensitive.

2014 ◽  
Vol 800-801 ◽  
pp. 526-530 ◽  
Author(s):  
Shu Cai Yang ◽  
Yu Hua Zhang ◽  
Quan Wan ◽  
Jian Jun Chen ◽  
Chuang Feng

The milling experiments were carried out using TiAlN and PCD coated carbide tools in high speed milling Ti6Al4V to compare and analyze tool wear and tool life of the two kinds of coating carbide tools. In addition, the effect of cooling and lubricating on tool wear is also studied. The results showed that fluid environment is not suitable for milling Ti6Al4V. PCD coating carbide tool can effectively increase the life of tool in high speed milling of Ti6Al4V.


2013 ◽  
Vol 711 ◽  
pp. 143-148 ◽  
Author(s):  
Wei Wei Liu ◽  
Xu Sheng Wan ◽  
Xiao Yan Li ◽  
Yuan Yu ◽  
Dong Fang Wang

The orthogonal experiment is processed for high-speed milling superalloy GH4169 with TiAlN coated carbide inserts. The empirical formula of the surface roughness is acquired by using Genetic Algorithm method. On the basis of this formula, studying the absolute sensitivity and relative sensitivity of surface roughness for milling speed, depth of cut and feed; The results showed that in the process of high-speed milling of high-temperature alloy GH4169, Surface roughness is most sensitive to the change of milling feed; change of milling depth take second place and milling speed is the least sensitive.


Author(s):  
Muataz Hazza ◽  
Nur Amirah Najwa

High speed turning (HST) is an approach that can be used to increase the material removal rate (MRR) by higher cutting speed. Increasing MRR will lead to shortening time to market. In contrast, increasing the cutting speed will lead to increasing the flank wear rate and then the tooling cost.  However, the main factor that will justify the best level of cutting speed is the tooling cost which merges all in one understandable measurable factor for manufacturer. The aim of this paper is to determine experimentally the optimum cutting levels that minimize the tooling cost in machining AISI 304 as a work piece machined by a coated carbide tool using one of the non-conventional methods: Genetic Algorithm (GA). The experiments were designed using Box Behnken Design (BBD) as part of Response Surface Methodology (RSM) with three input factors: cutting speed, feeding speed and depth of cut.


2012 ◽  
Vol 497 ◽  
pp. 30-34 ◽  
Author(s):  
Jin Yang Xu ◽  
Zhi Qiang Liu ◽  
Qing Long An ◽  
Ming Chen

The TiAlN and AlTiN coated carbide cutting tools were adopted for high-speed turning of α+β phase titanium alloy Ti-6Al-4V. Both the wear pattern and wear mechanism were investigated in this research. Results show that: MQL condition can greatly prolong the tool life of AlTiN coated carbide tool but has minor influence on improving the tool life of TiAlN carbide tool. AlTiN coated carbide tool was found to be qualified to obtain better cutting performance and longer tool life and is more suitable for processing titanium alloy TC4 compared with TiAlN coated tool under the same cutting parameters. In dry cutting condition, both adhesive and oxidation wear were observed to be the main wear types in these two coated carbide tools. However, in MQL condition, TiAlN coated tool may only suffer adhesive wear while the AlTiN coated carbide tool suffer adhesive, diffusion and oxidation wear.


2012 ◽  
Vol 426 ◽  
pp. 186-189
Author(s):  
X.Q Wang ◽  
Xing Ai ◽  
Jun Zhao ◽  
X.L. Fu ◽  
Y. Z. Pan

Ti6Al4V is a difficult to machine alloy with low cutting efficiency and server tool wear. A series of orthogonal turning tests with coated carbide in higher speed scale was carried out on a CA6140 lathe. The experiential functions of tool life based on orthogonal experiment were developed. The tool wear morphologies were examined by scanning electron microscope (SEM) and energy disperse spectroscopy (EDS), adhesion, diffusion and micro-chipping were the major wear mechanisms of coated carbide tool. Finally, the cutting parameters of coated carbide tool in Ti6Al4V dry turning were optimized based on tool life-efficiency contour analysis, in same cutting efficiency, the lower cutting speed and larger depth of cut are the better selection in Ti6Al4V turning for coated carbide tool.


2018 ◽  
Author(s):  
Kai Guo ◽  
Bin Yang ◽  
Jie Sun ◽  
Vinothkumar Sivalingam

Titanium alloys are widely utilized in aerospace thanks to their excellent combination of high-specific strength, fracture, corrosion resistance characteristics, etc. However, titanium alloys are difficult-to-machine materials. Tool wear is thus of great importance to understand and quantitatively predict tool life. In this study, the wear of coated carbide tool in milling Ti-6Al-4V alloy was assessed by characterization of the worn tool cutting edge. Furthermore, a tool wear model for end milling cutter is established with considering the joint effect of cutting speed and feed rate for characterizing tool wear process and predicting tool wear. Based on the proposed tool wear model equivalent tool life is put forward to evaluate cutting tool life under different cutting conditions. The modelling process of tool wear is given and discussed according to the specific conditions. Experimental work and validation are performed for coated carbide tool milling Ti-6Al-4V alloy.


Sign in / Sign up

Export Citation Format

Share Document