Study on the Tool Wear of Coated Carbide Tool in High Speed Milling Titanium Alloy

2014 ◽  
Vol 800-801 ◽  
pp. 526-530 ◽  
Author(s):  
Shu Cai Yang ◽  
Yu Hua Zhang ◽  
Quan Wan ◽  
Jian Jun Chen ◽  
Chuang Feng

The milling experiments were carried out using TiAlN and PCD coated carbide tools in high speed milling Ti6Al4V to compare and analyze tool wear and tool life of the two kinds of coating carbide tools. In addition, the effect of cooling and lubricating on tool wear is also studied. The results showed that fluid environment is not suitable for milling Ti6Al4V. PCD coating carbide tool can effectively increase the life of tool in high speed milling of Ti6Al4V.

2009 ◽  
Vol 626-627 ◽  
pp. 189-194
Author(s):  
P. Liu ◽  
Jiu Hua Xu ◽  
Yu Can Fu

TA15 (Ti-6.5Al-2Zr-1Mo-1V) is a close alpha titanium alloy strengthened by solid solution with Al and other component. A series of experiments were carried out on normal and high speed milling of TA15. The recommended tools for many years had been the uncoated tungsten carbide grade K. In this work, the tool life of coated carbide tools used in high speed milling of forging and cast titanium alloy was studied. Additionally, the wear mechanism of cutting tools was also discussed. Finally, surface integrity, including surface roughness, metallograph and work hardening, were examined and analyzed. The result shows that the surface quality of forging and cast machined by carbide cutter is similar, but the tool life of carbide in high speed milling of forging TA15 is longer than that in high speed milling of cast TA15.


2013 ◽  
Vol 651 ◽  
pp. 436-441
Author(s):  
Wei Wei Liu ◽  
Xu Sheng Wan ◽  
Yuan Yu ◽  
Feng Li ◽  
Hao Chen

Through the orthogonal test of the TiALN coated carbide tool high-speed milling of high-temperature alloy GH4169, the empirical formula of the tool life are acquired by using multiple linear regression method. On the basis of this formula, studying the absolute sensitivity and relative sensitivity of TiALN coated carbide tool life for milling speed, depth of cut and feed; The results showed that in the process of high-speed milling of high-temperature alloy GH4169, tool life decreased with the increase of milling speed, feed and depth of cut; tool life is most sensitive to the change of milling speed; change of feed take second place and milling depth is the least sensitive.


2012 ◽  
Vol 497 ◽  
pp. 30-34 ◽  
Author(s):  
Jin Yang Xu ◽  
Zhi Qiang Liu ◽  
Qing Long An ◽  
Ming Chen

The TiAlN and AlTiN coated carbide cutting tools were adopted for high-speed turning of α+β phase titanium alloy Ti-6Al-4V. Both the wear pattern and wear mechanism were investigated in this research. Results show that: MQL condition can greatly prolong the tool life of AlTiN coated carbide tool but has minor influence on improving the tool life of TiAlN carbide tool. AlTiN coated carbide tool was found to be qualified to obtain better cutting performance and longer tool life and is more suitable for processing titanium alloy TC4 compared with TiAlN coated tool under the same cutting parameters. In dry cutting condition, both adhesive and oxidation wear were observed to be the main wear types in these two coated carbide tools. However, in MQL condition, TiAlN coated tool may only suffer adhesive wear while the AlTiN coated carbide tool suffer adhesive, diffusion and oxidation wear.


2009 ◽  
Vol 407-408 ◽  
pp. 24-27
Author(s):  
Katsuhiko Sakai ◽  
Yasuo Suzuki ◽  
Hisaya Inoue ◽  
Katsuyoshi Utino ◽  
Yasuyuki Horikoshi

This paper describes the effects of novel nitriding technique used in various carbide cutting tools. In manufacturing, eco-friendly machining is demanded of late. So far, many kinds of methods were made practical, for example MQL process. Through the development of coating technology, dry cutting process has been used and even now more improvement of tool life is required. Both coated and the non-coated carbide tool were applied with novel nitriding to elongate their tool life. The results show novel nitriding decreased the coated carbide tool wear and improved its tool life 1.4 times longer than non-treated carbide. Similarly, the non-coated carbide tool wear decreased and built-up edge on tool surface reduced. These improvements may be derived from the hardening effect on the binder material within the carbide tools.


2018 ◽  
Author(s):  
Kai Guo ◽  
Bin Yang ◽  
Jie Sun ◽  
Vinothkumar Sivalingam

Titanium alloys are widely utilized in aerospace thanks to their excellent combination of high-specific strength, fracture, corrosion resistance characteristics, etc. However, titanium alloys are difficult-to-machine materials. Tool wear is thus of great importance to understand and quantitatively predict tool life. In this study, the wear of coated carbide tool in milling Ti-6Al-4V alloy was assessed by characterization of the worn tool cutting edge. Furthermore, a tool wear model for end milling cutter is established with considering the joint effect of cutting speed and feed rate for characterizing tool wear process and predicting tool wear. Based on the proposed tool wear model equivalent tool life is put forward to evaluate cutting tool life under different cutting conditions. The modelling process of tool wear is given and discussed according to the specific conditions. Experimental work and validation are performed for coated carbide tool milling Ti-6Al-4V alloy.


Author(s):  
Emel Kuram

Tool coatings can improve the machinability performance of difficult-to-cut materials such as titanium alloys. Therefore, in the current work, high-speed milling of Ti6Al4V titanium alloy was carried out to determine the performance of various coated cutting tools. Five types of coated carbide inserts – monolayer TiCN, AlTiN, TiAlN and two layers TiCN + TiN and AlTiN + TiN, which were deposited by physical vapour deposition – were employed in the experiments. Tool wear, cutting force, surface roughness and chip morphology were evaluated and compared for different coated tools. To understand the tool wear modes and mechanisms, detailed scanning electron microscope analysis combined with energy dispersive X-ray of the worn inserts were conducted. Abrasion, adhesion, chipping and mechanical crack on flank face and coating delamination, adhesion and crater wear on rake face were observed during high-speed milling of Ti6Al4V titanium alloy. In terms of tool wear, the lowest value was obtained with TiCN-coated insert. It was also found that at the beginning of the machining pass TiAlN-coated insert and at the end of machining TiCN-coated insert gave the lowest cutting force and surface roughness values. No change in chip morphology was observed with different coated inserts.


2014 ◽  
Vol 564 ◽  
pp. 566-571
Author(s):  
K. Kamdani ◽  
Sulaiman Hasan ◽  
Mohd Amri Lajis

Inconel 718 is a registered trademark of Special Metals Corporation that refers to a family of austenitic nickel-chromium-based super alloys. This material usually being used or operate in high temperature and extreme condition like aerospace industry, turbocharger rotors and seals. This research presents an experimental study of the cutting force variation, surface roughness, tool life and tool wear in end milling Inconel 718. The experimental results showed that flank wear was the predominant failure mode affecting tool life for TiAlN and TiN coated carbide tool. TiAlN is the better coated tool than TiN because it produce better surface finish and resultant force. Feed rate is one of the parameter that effecting results in this experiment. The higher feed rate will shorten the life of the tool. Although for the cutting condition, the situation is quite different where the proper cutting speed will maintain the tool life and tool wear for cutting tool. The overall study shows that TiAlN coated carbide tool with cutting speed 100 m/min, depth of cut 0.5 mm and feed rate 0.1 mm/tooth is the optimum parameter in this experiment.


Sign in / Sign up

Export Citation Format

Share Document