The Finite Element Analysis on Shear-Lag Effect of the Steel Box-Girder

2013 ◽  
Vol 671-674 ◽  
pp. 815-819
Author(s):  
Yi Sheng Li ◽  
Jun Ping Wang ◽  
Wei Liu ◽  
Jian Ming Shen

The shear-lag effect of steel box-girder is qualitatively analyzed by using the finite element software ANSYS. Various methods to reduce the shear-lag effect are studied, and the most effective method is changing the web layout and increasing the number of box-room among them. The suggested value of effective width to thickness ratio b1/t1 of the flange without considering the shear-lag effect are obtained in this paper.

2013 ◽  
Vol 671-674 ◽  
pp. 974-979
Author(s):  
Jie Dai ◽  
Jin Di ◽  
Feng Jiang Qin ◽  
Min Zhao ◽  
Wen Ru Lu

For steel box girder of cable-stayed bridge, which using incremental launching method, during the launching process, structural system and boundary conditions were changing, structure mechanical behaviors were complex. It was necessary to conduct a comprehensive analysis on internal force and deformation of the whole structure during the launching process. Took a cable-stayed bridge with single tower, double cable planes and steel box girder in China as an example; finite element software MIDAS Civil 2010 was used to establish a model for steel box girder, simulation analysis of the entire incremental launching process was carried out. Variation rules and envelopes of the internal force, stress, deformation and support reaction were obtained. The result showed that: the maximum value of positive bending moment after launching complete was 60% of the maximum value of positive bending moment during the launching process. The maximum value of negative bending moment after launching complete was 78% of the maximum value of negative bending moment during the launching process.


2014 ◽  
Vol 644-650 ◽  
pp. 5054-5060
Author(s):  
Rui Juan Jiang ◽  
Yu Feng Xiao ◽  
Xiao Wei Yi ◽  
Qi Ming Wu ◽  
Wei Ming Gai

There are few studies about the shear lag effect and the effective flange width of the PC (Prestressed Concrete) box girder bridge with corrugated steel webs throughout the world in current time. In the present paper, based on the three-dimensional finite element analysis for a long-span continuous PC box girder bridge with corrugated steel webs and the corresponding conventional box girder bridge with concrete webs, a comparative study on the shear lag effect under vertical loads are carryied out together with the analyslis on the coefficient of the effective flange width. The results show that in the PC box girder with corrugated steel webs, the transverse distributions of longitudinal normal stress on the section of the slabs are obviousely non-uniform and they are different with those in the conventional PC box girder with concrete webs. And moreover, the shear lag effects in top slab of the PC box girder with corrugated steel webs are almost less obvious than those of the conventional PC box girder with concrete webs. However, the shear lag effects in bottom slab of the PC box girder with corrugated steel webs are almost similar to those of the conventional PC box girder with concrete webs, no matter what kind of vertical bending moment the cross section is subjected to


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Fangwen Wu ◽  
Wenlong Tang ◽  
Shuo Liu ◽  
Yanpeng Feng ◽  
Guangqian Wang ◽  
...  

A sufficient understanding of mechanical performance of self-anchored suspension bridge with double-sided steel box girder is essential for design and normal use as such bridges are widely built in urban bridge. Using the Yunlongwan Bridge which is a suspension bridge with ultra-wide double-sided steel box girder as an example, this paper investigates its deformation and mechanical performance under vehicle load. Firstly, based on the field test results, the deformation performance of the bridge and the stress distribution of the main girder are analysed, with emphasis on the shear lag effect of double-sided steel box girder. Then, a multiscale model of the bridge was built, and the accuracy of the model was verified by comparison with the test data. Finally, the influence of design parameters on the mechanical behaviour of double-sided steel box girder is studied by numerical simulation. The results show that the deformation of the bridge has good symmetry, there is obvious shear lag effect on the main girder, and the U-rib thickness, diaphragm spacing, and vehicle load could significantly affect the stress of the main girder top plate. The obtained analytical results lead to a better understanding of the mechanical performance and provide reference for the design of self-anchored suspension bridge with double-sided steel box girder.


2021 ◽  
Vol 30 (3) ◽  
Author(s):  
Honglei Zhang

In order to study the influence of spatial stress effect and shear lag effect on the cracking of PC continuous thin-walled box girder bridge, a spatial model was established by using ANSYS finite element software to analyze the internal stress distribution of the bridge. The test results are compared with the analysis results of spatial model and plane link system model through the load test of real bridge. The results show that the longitudinal stress is evenly distributed along the width direction, which means that the spatial stress effect and the shear lag effect have little influence on the downdeflection of the bridge. The shear lag coefficient at the longitudinal axis of midspan bottom plate and the intersection of bottom plate and web are larger than other positions, which is most likely to produce cracks caused by stress concentration, and should be strengthened here in practical engineering. The results of load test show that the results of spatial finite element analysis are more reliable than those of plane link system calculation, and the design and construction based on the results of spatial finite element analysis is safer.


Author(s):  
Shukun Duan ◽  
JinYang Gao ◽  
Yiwei Gu ◽  
Jiansheng Fan ◽  
Yufei Liu

<p>Shear lag effect is a structural effect that must be considered in bridge design. In this paper, the theoretical research progress such as the elastic analytical method, the energy variational method and the bar simulation method of the shear lag effect are reviewed. The factors affecting the shear lag effect and the effective flange width are discussed, the span width ratio is the main factor. The calculation methods of effective flange width according to American, European and Chinese codes are introduced. Based on an engineering case, the results of different specifications are compared with the finite element analysis results, and the inadequacies of the current design specifications are pointed out. The problems of shear lag effect and engineering design methods in the future need to be focused are discussed, including the development of finite element method, experimental research and practical design methods.</p>


Sign in / Sign up

Export Citation Format

Share Document