Dynamic Modeling and Analysis of Tank Vehicle under Braking Situation

2013 ◽  
Vol 694-697 ◽  
pp. 176-180
Author(s):  
Ying Wan ◽  
Li Mai ◽  
Zhi Gen Nie

Considering the instability of the direction dynamics of tank vehicle system under braking maneuver, the longitudinal equivalent model of liquid was formulated with consideration of both the steady-state and the transient state dynamics of the liquid. The Matlab/simulink program of the liquid was built and was combined with the vehicle model in Trucksim software to simulate and analyze the motion of the liquid cargo centroid and its dynamical effects on the vehicle under braking maneuver. It is observed that the liquid cargo slosh motion in tank vehicles has significant influences on braking performance, pitch motion and perpendicular motion of the vehicle. The results of this paper have significant help for studies on dynamics of vehicle tankers under braking maneuver and ensurement of braking stability and security.

Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 3022
Author(s):  
Peter Girovský ◽  
Jaroslava Žilková ◽  
Ján Kaňuch

The paper presents the study of an anti-lock braking system (ABS) that has been complemented by a fuzzy controller. The fuzzy controller was used to improve the braking performance of the vehicle, particularly in critical situations, for example, when braking a vehicle on wet road. The controller for the ABS was designed in the MATLAB/Simulink program. The designed controller was simulated on a medium-size vehicle model. During testing, three braking systems were simulated on the vehicle model. We compared the performance of a braking system without an ABS, a system with a threshold-based conventional ABS, and a braking system with the proposed ABS with a fuzzy controller. These three braking systems were simulation tested during braking the vehicle on a dry straight road and on a road with combined road adhesion. A maneuverability test was conducted, where the vehicle had to avoid an obstacle while braking. The results of each test are provided at the end of the paper.


1973 ◽  
Vol 1 (2) ◽  
pp. 121-137 ◽  
Author(s):  
J. L. McCarty ◽  
T. J. W. Leland

Abstract The results from recent studies of some factors affecting tire braking and cornering performance are presented together with a discussion of the possible application of these results to the design of aircraft braking systems. The first part of the paper is concerned with steady-state braking, that is, results from tests conducted at a constant slip ratio or steering angle or both. The second part deals with cyclic braking tests, both single cycle, where brakes are applied at a constant rate until wheel lockup is achieved, and rapid cycling of the brakes under control of a currently operational antiskid system.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1299
Author(s):  
Shengli Lv

This paper analyzed the multi-machine repairable system with one unreliable server and one repairman. The machines may break at any time. One server oversees servicing the machine breakdown. The server may fail at any time with different failure rates in idle time and busy time. One repairman is responsible for repairing the server failure; the repair rate is variable to adapt to whether the machines are all functioning normally or not. All the time distributions are exponential. Using the quasi-birth-death(QBD) process theory, the steady-state availability of the machines, the steady-state availability of the server, and other steady-state indices of the system are given. The transient-state indices of the system, including the reliability of the machines and the reliability of the server, are obtained by solving the transient-state probabilistic differential equations. The Laplace–Stieltjes transform method is used to ascertain the mean time to the first breakdown of the system and the mean time to the first failure of the server. The case analysis and numerical illustration are presented to visualize the effects of the system parameters on various performance indices.


Sign in / Sign up

Export Citation Format

Share Document