Ti2AlN Prepared by Self-Propagating High-Temperature Combustion Method Using TiN as Additive

2013 ◽  
Vol 710 ◽  
pp. 37-40
Author(s):  
Jia Jin Tian ◽  
Li Li Zhang ◽  
Xiong Wei Bi ◽  
Gui Yang Liu ◽  
Zhi Mei Ding

Ti2AlN ceramic have been prepared by self-propagating high-temperature synthesis method using Ti, Al and TiN mixture as raw materials under different N2 pressures. X-ray diffraction (XRD) and scanning electron microscope (SEM) have been used to determine the phase composition and micro morphology of the products. XRD analysis indicates that the main phase of the products is layered ternary compound Ti2AlN, but there are TiN and AlTi3 impurities in the products. With increasing N2 pressure, the relative content of TiN and AlTi3 decreases. SEM imagines exhibits that the grains of the products become larger with increasing N2 pressures.

2013 ◽  
Vol 710 ◽  
pp. 199-202
Author(s):  
Jia Jin Tian ◽  
Feng Rui Zhai ◽  
Li Li Zhang ◽  
Gui Yang Liu ◽  
Zhi Mei Ding

Ti2AlN ceramic have been prepared by self-propagating high-temperature synthesis method using Ti, Al and TiAl mixture as raw materials under different N2 pressures. X-ray diffraction (XRD) and scanning electron microscope (SEM) have been used to determine the phase composition and micro morphology of the products. XRD analysis indicates that the main phase of the products is layered ternary compound Ti2AlN, but there are TiN and AlTi3 impurities in the products. With increasing N2 pressure, the relative content of TiN increases, whereas the relative content of AlTi3 decreases. SEM imagines exhibits that layered grains of the products become larger and tighter with increasing N2 pressures.


2011 ◽  
Vol 186 ◽  
pp. 7-10 ◽  
Author(s):  
Gui Yang Liu ◽  
Jun Ming Guo ◽  
Bao Sen Wang ◽  
Ying He

Single phase Al3+ doped LiMn2O4 has been prepared by flameless solution combustion synthesis method at 600oC for 1h. X-ray diffraction (XRD) and scanning electric microscope (SEM) were used to determine the phase composition and micro morphology of the products. XRD analysis indicates that the purities increase and the lattice parameters of the products decrease with increasing Al3+ content. Electrochemical test indicates that the cycling performance of the products with Al3+ doping are better than that of the product without Al3+ doping. The product LiAl0.10Mn1.90O4 gets the best electrochemical performance. At the current density of 30mA/g, the initial discharge capacity of LiAl0.10Mn1.90O4 is 124.8mAh/g, and after 20 cycles, the capacity retention is more than 89%. SEM investigation indicates that the particles of LiAl0.10Mn1.90O4 are sub-micron in size and well dispersed.


2021 ◽  
Vol 233 ◽  
pp. 01078
Author(s):  
Shuwei Zhang ◽  
Zhaoyu Wang ◽  
Xuejiao Yan ◽  
Jing Wang ◽  
Li Zhang ◽  
...  

Total organic carbon (TOC) can reflect the total amount of organic matter in water. This paper introduces the common methods of measuring organic carbon, including high temperature combustion method, potassium persulfate oxidation method, spectrometry, ozone oxidation chemiluminescence method, supercritical water oxidation method and so on. At present, high temperature combustion method is the most widely used method for TOC measurement in seawater, because of its high oxidation efficiency. TOC sensor needs to be developed to realize in-situ and long-term monitoring.


2015 ◽  
Vol 1095 ◽  
pp. 655-661 ◽  
Author(s):  
Tong Liu ◽  
Yue Guang Yu ◽  
Jie Shen ◽  
Jian Ming Liu ◽  
Qiu Yuan Lu

To improve gas turbine performance, it is essential to decrease back flow gases in the high-temperature combustion region of turbo machine by reducing the shroud/rotor gap. An abradable seal coating will function effectively. Therefore, it is significant to identify and characterize the main wear mechanisms occurring on turbo machinery seals. A high temperature and speed test rig has been developed by BGRIMM for testing the AlSi–hBN abradable seal coating and Ti-6Al-4V dummy blade. Impact velocities between 150 and 300m·s-1 and incursion rates between 5.0 and 480 μm·s-1 have been applied. It was found that incursion rate has a greater impact on the wear mechanism of the AlSi–hBN coating, with tests at low incursion rate showing a obvious grooving and little micro-rupture, whereas tests at high incursion rate showing significant cutting and adhesion. The present work also shown that tests at low incursion rate related to a higher IDR, which means that blade suffered a serious wear. The investigation together with SEM and XRD analysis on the coating revealed both wear and adhesion occurred at the end of the test.


Luminescence ◽  
2014 ◽  
Vol 30 (4) ◽  
pp. 472-478 ◽  
Author(s):  
Nimesh P. Patel ◽  
M. Srinivas ◽  
Dhaval Modi ◽  
Verma Vishwnath ◽  
K. V. R. Murthy

2014 ◽  
Vol 32 (4) ◽  
pp. 696-701 ◽  
Author(s):  
Hong-Yan Sun ◽  
Xin Kong ◽  
Wei Sen ◽  
Zhong-Zhou Yi ◽  
Bao-Sen Wang ◽  
...  

AbstractEffect of different Sn contents on combustion synthesis of Ti2SnC was studied using elemental Ti, Sn, C and TiC powders as raw materials in the Ti-Sn-C and Ti-Sn-C-TiC system, in which the molar ratio of Ti/C was set as 2:1. The reaction mechanism for the formation of Ti2SnC was also investigated. The results showed that the amount of Ti2SnC in combustion products firstly increased with increasing of Sn content (0.6 to 0.8 mol), and then decreased with further increasing of Sn content (1.0 to 1.2 mol). Upon addition of 15 % TiC instead of Ti and C, the optimum addition of Sn decreased to 0.7 mol and a higher purity of Ti2SnC was obtained. The Ti2SnC powders were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD).


Sign in / Sign up

Export Citation Format

Share Document