Analysis of Performance Decay Behavior for Asphalt Pavement Based on Aging

2013 ◽  
Vol 723 ◽  
pp. 22-26 ◽  
Author(s):  
Pei Long Li ◽  
Zhan Ding ◽  
Zheng Qi Zhang

Aging is a main factor affecting the durability of asphalt pavement. To study decay behavior of asphalt pavement with aging, aged asphalt was extracted from stratified pavement mixtures for different service-life. The changes of asphalt properties with service time and depth variations of the pavement were discussed. And numerical simulation analysis of pavement structure was conducted with pavement gradient modulus changes caused by aging. The results indicate that asphalt stiffness increases and low-temperature performance decays sharply with the extension of pavement service life, especially in the first several years. The vertical aging differences from top to bottom of pavement were significant, the aging extents decrease continuously from the surface, which cause the gradient changes of pavement modulus. The maximum tensile stress and maximum shear stress all increase with surface modulus increasing, so more serious aging can induce greater gradient modulus, shear stress and tensile stress are larger under the same loads, which have more serious damage to the pavement structure.

2010 ◽  
Vol 152-153 ◽  
pp. 1192-1198 ◽  
Author(s):  
Ze Jiao Dong ◽  
Zong Jie Sun ◽  
Xiang Bing Gong ◽  
Hao Liu

Frequent starting and braking of vehicles causes rutting of asphalt pavement at urban intersection. As a result, dynamic response of pavement subjected to these kinds of vehicle loadings can be used to analyze rutting mechanism. At first, vehicle loading at urban intersection was described by a vertical and horizontal combined moving pressure with variable speeds. Then, three-dimensional finite element model in transient dynamic mode is developed based on the practical pavement structure. And the moving load, boundary conditions and material parameters were briefly introduced. Finally, through the comparison of time histories and spatial distribution among accelerating, decelerating and uniform motion, mechanism of rutting of asphalt pavement at urban intersections was illustrated according to the finite element simulation. It shows that frequent starting and braking of vehicle at urban intersections, obviously change the stress distribution within pavement structure compared with uniform motion case. The distribution and amplitude of maximum shear stress and horizontal shear stress was observed during the passage of the loading, which will result in shear flow deformation. Pavement structure subjected to moving load exhibits an alternative characteristic which will accelerate the rutting damage of pavement.


2011 ◽  
Vol 368-373 ◽  
pp. 289-292
Author(s):  
San Qiang Yang ◽  
Pei Wen Hao ◽  
Li Qun Tang ◽  
Tao Liu

This epoxy asphalt used by the U.S., Japan Epoxy Asphalt two steel bridge deck pavement materials at different thickness analysis of pavement deformation force. Pavement derived the maximum tensile stress, shear stress and elastic modulus, pavement thickness of mathematical models. The results showed that: Pavement maximum tensile stress, shear stress, pavement elastic modulus with available four times a polynomial equation fitted, pavement surface transverse maximum stress increases as the pavement thickness decreases, horizontal maximum shear stress between layers does not increase with the pavement thickness decreases, but the thickness of the pavement at 40-50mm have a peak, then gradually increases with the thickness decreases.


2011 ◽  
Vol 368-373 ◽  
pp. 193-196
Author(s):  
Xiao Hua Wang ◽  
Ji Shu Sun ◽  
Tian Xiao ◽  
Hui Ran Pi

Asphalt layer modulus is one of the important mechanical parameters in pavement design. It will directly influence the design result and the mechanical properties of asphalt pavement structure. Using pavement design and analysis software, the effects of asphalt layer modulus on surface deflection, tensile stress at the bottom of base and sub-base course, stress at the the bottom of asphalt layer and service life of heavy load semi-rigid asphalt pavement structure were analyzed systematically. And the influencing laws were analyzed, too. The results indicate that the mechanical properties, deforming characteristics and service life of heavy load asphalt pavement were influnced significantly by asphalt layer modulus. With the increasing of asphalt layer modulus, the surface deflection, tensile stress at the bottom of base and sub-base course would significantly decrease, and service life of heavy load semi-rigid asphalt pavement structure would be improved.


2012 ◽  
Vol 450-451 ◽  
pp. 267-272 ◽  
Author(s):  
Peng Wang ◽  
Can Cui

In recent years the research on Surface-initiated longitudinal cracking along wheelpath (or Top-Down cracking) is become a fresh hotspot in the field of pavement damage focused by international asphalt pavement engineering.Because the traditional load is the vertical surface load with uniform tire pressure, this loading is applied at only one position and no effort is made to distinguish between tire pattern.The traditional method can’t explain the mechanism of the top-down cracking. In order to discuss the mechanism of TDC, this paper establish a 3D finite element model of semi-rigid pavement structure and use the large finite element software Abaqus. The analysis shows that, in the crack beginning stage, the main tensile stress appears under the center of the load on the sub-base of the pavement,and its value increases with the time. When cracks appear in the base, the position of the main tensile stress appears at the bottom of the surface layer, under the outside edge of wheel path. The value of the main shear stress increases at the stage of the cracks beginning, but the increase is small. The value of the main shear stress decreases when the cracks appear in the middle of the surface layer, and the position of the main shear stress changes with the depth of the cracks. With the increase of the cracks’ depth, the adverse influence of the shear stress becomes weaker and weaker.So the key of controlling the cracks in the surface layer is prevention. To prevent the development of the cracks, the tensile strength of the layer’s material should be enhanced in any way. The stress and its value resulted from the vehicle loaded on the structure layer is bigger than the other cases when the position of the cracks is at the edge of wheel path, and the stress is much bigger than the shear strength and the fracture toughness of the material of the layer. As the shear strength of the material is not enough, the vertical cracks are easier to appear at the edge of wheel path under the load of the vertical. Once it appearing, the cracks will extended into the layer because of the load of vertical. Eccentric load generates greater stress in the structure than the load loaded upright. In fact, though, non-channeling can reduce the appearance of the tracks, eccentric load enhance the development of the cracks in the surface because of the existence of the cracks in the surface layer.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Chen Zhang ◽  
Yong Lei

To improve the durability of asphalt pavement with heavy traffic conditions in cold regions, the parameter optimization of graded macadam transitional layer (GMTL) for the inverted asphalt pavement based on the mechanical response and the strength standard was studied. The stress distribution laws of GMTL were studied with different loads by means of BISAR3.0. The influences of the thickness and the modulus of GMTL on the pavement stress were analyzed. The optimal thickness and the modulus range of the GMTL were determined. Combined with a self-developing real-time data acquisition and a processing system for aggregate attitude (RDAPS), the strength control standard of the GMTL was established. Finally, the performance of the optimized inverted asphalt pavement structure was verified through the MEPDG design method. The results show that the tensile stress at the bottom of the surface layer reduced by about 58%, and the shear stress in GMTL increased by about 17% when the modulus of GMTL increases from 300 MPa to 800 MPa. However, the change in modulus has no significant influence on the maximum shear stress in the asphalt surface layer and the tensile stress in the base layer bottom. When the thickness of GMTL increases from 12 cm to 20 cm, the tensile stress in the bottom of the base layer reduced by about 31%. Based on the mechanical results from simulation calculation and the technical indicator required in the field, the recommended optimal parameters of GMTL are the modulus of 700 MPa and the thickness of 18 cm. In addition, the spatial attitude angle ΦN of wireless intelligent attitude aggregate (WIAA), the compressive strength Rc standard, and the California Bearing Ratio (CBR) standard were analyzed, and the strength control standard of inverted asphalt pavement with GMTL was proposed, namely, CBR ≥ 354%, Rc ≥ 1.06 MPa, and ΦN ≤ 3°. A significant improvement in the resistance to crack can be seen in the inverted asphalt pavement when the optimized structure was applied. Taking the 20-year service life as an example, the top-down cracks reduced by 29.3% and the bottom-up cracks reduced by 32.6% in comparison to the original structure. The recommended structural parameters of GMTL could be used to guide the construction and design of inverted asphalt pavement in cold regions.


2014 ◽  
Vol 580-583 ◽  
pp. 632-635
Author(s):  
Li Ya Su

With the rapid development of traffic cause in our country, the operating requirement of driving load factors to pavement structure become higher and higher. The Semi-rigid base asphalt pavement structure exposed some defects and shortcomings, so the study of flexible base asphalt pavement structure is put on the agenda under the circumstances.Based on the research achievements at home and abroad of the existing asphalt pavement structure , choosing different elastic modulus and thickness to calculate and analyze the flexible base by ANSYS, gaining the law and trend of mechanics response (the vertical displacement and tensile stress) about pavement structure for the flexible base pavement of each layer foundation to provide the design reference.


2011 ◽  
Vol 243-249 ◽  
pp. 3868-3872
Author(s):  
Lai Gui Wang ◽  
Mei Sheng Feng ◽  
Hong Zhu Zhang

For the study of soft subgrade pavement cracking process, it establishes the pavement structure tension crack model by elastic layered theory. Based on the finite element method, it studies the tension crack evolution process. It establishes the tension crack stress criterion to the roadbed. Analysis shows that the distresses of asphalt pavement of the real highway results from the damage by asymmetric sedimentation which is under excessively axle loading on pavement structure, rather than the fatigue damage by axle loading repetitions in the condition of asymmetric intensity in the same layer. The results show that the soft degree of the subgrade is proportional to the tensile stress, the more localized soft, the easier to crack the road. The soft roadbed does not have a homogeneous structure of the road surface, the tension stress rupture occurred in the discontinuous surface. The road structure has a set of tensile stress under the circulation wheel load, it formats a new fracture surface, and the structure form corresponding evolves, and causes stress state change. At last most of the road sub-base crack, and surface cracking occurres, so the pavement failure.


2013 ◽  
Vol 405-408 ◽  
pp. 1745-1752
Author(s):  
Li Juan Zhang

The purpose of this paper is to study dynamic-characteristics of asphalt-pavement on semi-rigid base loaded with moving, heavy-load. Based on transient-dynamics theory, three-dimensional finite-element (FE) model was developed for structural dynamic-responses analysis using ANSYS software. The heavy-duty axle-load model was established according to Belgium-Design Code, and the dynamic-load was simplified as sinusoidal-wave load. For the pavement mechanics indexes (road-surface deflection, the vertical and lateral stress, the shear stress and the strain), the time-history curves and distribution conditions in the structure were presented. Expect tensile-strain at surface-layer, the relationship between axle-load weight and mechanic-indexes are almost linearly proportional. The calculation shows that under moving heavy-load, the surface-layer suffers from rather high vertical compressive-stress and shear-stress, the base and subbase are loaded with high tensile-stress and the subgrade top undergoes large vertical-strain . For asphalt-pavement on semi-rigid loaded with moving, heavy-load, besides the conventional indexes (including road-surface deflection and tensile-stress at the bottom of base or subbase), the design indexes should also include the shear-stress on road surface, the vertical-strain on the top of subgrade and the vertical compressive-stress on road surface.


2012 ◽  
Vol 268-270 ◽  
pp. 660-663
Author(s):  
Xiao Ge Tian ◽  
Ying Liu

Waterproof bonding layer is an important component for permeable asphalt pavement. BISAR was used to analysis the interfacial stress under different conditions, and the rules of the tensile zone, the maximal tensile stress, the maximal interfacial shear stress and the corresponding point were obtained, which should be considered in selecting the WBL materials.


2010 ◽  
Vol 163-167 ◽  
pp. 4474-4477 ◽  
Author(s):  
Wei Ouyang ◽  
Guo Feng Yu ◽  
Fang Fang Zhu

The new ways of anti-rutting was put forward by improving modulus of asphalt concrete and the effect of HMAT(high modulus asphalt concrete) on rutting is studied in view of mechanics; The cause of asphalt pavement track is closely related to pavement structure under load. Starting from the mechanism of rutting, the mechanical property of HMAT and the effect of modulus in middle layer on the rutting were analyzed; the dynamic stability and modulus of HMAC were analyzed by text and the result show that Increase of the dynamic stability and modulus of HMAC went against rutting; The mechanism of pavement structure was analyzed by the numerical analysis show that the maximum shear stress occurred in middle layer of pavement structure according to mechanical calculation. HMAC can raise modulus of elasticity of middle layer. HMAC can also improve stress state of pavement structure, reduce shear strain and prevent asphalt pavement track.


Sign in / Sign up

Export Citation Format

Share Document