The Research on Steering Fracture Numerical Simulation

2013 ◽  
Vol 734-737 ◽  
pp. 1488-1492
Author(s):  
Zhen Yu Liu ◽  
Li Hong Yao ◽  
Hu Zhen Wang ◽  
Cui Cui Ye

The fractures after artificial steering fracturing appear in shades of curved surface. Aiming at the problem of steering fracture, in the paper, numerical simulation method under the condition of three-dimensional two-phase flow is presented based on finite element method. In this method, of steering fracture was achieved by adopting surface elements fractures and tetrahedron elements to describe formation. By numerical simulation, the change rule of oil and water production performance of steering fractures can be calculated, and then the steering fracture parameters can be optimized before fracturing. A new method was supplied for the numerical simulation of artificial fractured well.

Author(s):  
Xiaoxin Wang ◽  
Hongli Hu ◽  
Lin Li ◽  
Bo Wang

This paper proposed three-dimensional numerical simulation method by coupling of electrostatic and fluid fields to evaluating the performance of electrical sensor in the concentration measurement of gas/solid two-phase flow. Compared with the static numerical simulation, this real-time dynamic 3-D simulation method can research on a designed capacitance sensor combining the dynamic characteristics of the two-phase flows for concentration measurement. Several fluid-electrostatic models of transmission pipes with different sensor structures are built. Under different test positions and different particle concentrations, the flow characteristics and the corresponding electric signals can be obtained, and the correlation coefficient between the concentration values and the capacitance values are used for performance evaluation of the sensors. The effects of flow regimes on concentration measurement are also been investigated in this paper. To validate the results of simulation, an experimental platform with horizontal straight pipe for phase volume concentration measurement of solid/air two-phase flow is built, and the experimental results agree well with simulation conclusions. The simulation and test results show that the coupling models can give constructive reference opinions for the sensor design and collection of installation position in different transmission pipelines, which are very important for the practical process of pneumatic conveying system.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Zhengzhi Wang ◽  
Chunling Zhu

In view of the rotor icing problems, the influence of centrifugal force on rotor blade icing is investigated. A numerical simulation method of three-dimensional rotor blade icing is presented. Body-fitted grids around the rotor blade are generated using overlapping grid technology and rotor flow field characteristics are obtained by solving N-S equations. According to Eulerian two-phase flow, the droplet trajectories are calculated and droplet impingement characteristics are obtained. The mass and energy conservation equations of ice accretion model are established and a new calculation method of runback water mass based on shear stress and centrifugal force is proposed to simulate water flow and ice shape. The calculation results are compared with available experimental results in order to verify the correctness of the numerical simulation method. The influence of centrifugal force on rotor icing is calculated. The results show that the flow direction and distribution of liquid water on rotor surfaces change under the action of centrifugal force, which lead to the increasing of icing at the stagnation point and the decreasing of icing on both frozen limitations.


2014 ◽  
Vol 541-542 ◽  
pp. 1288-1291
Author(s):  
Zhi Feng Dong ◽  
Quan Jin Kuang ◽  
Yong Zheng Gu ◽  
Rong Yao ◽  
Hong Wei Wang

Calculation fluid dynamics software Fluent was used to conduct three-dimensional numerical simulation on gas-liquid two-phase flow field in a wet flue gas desulfurization scrubber. The k-ε model and SIMPLE computing were adopted in the analysis. The numerical simulation results show that the different gas entrance angles lead to internal changes of gas-liquid two-phase flow field, which provides references for reasonable parameter design of entrance angle in the scrubber.


2014 ◽  
Vol 884-885 ◽  
pp. 104-107
Author(s):  
Zhi Jun Li ◽  
Ji Qiang Li ◽  
Wen De Yan

For the water-sweeping gas reservoir, especially when the water-body is active, water invasion can play positive roles in maintaining formation pressure and keeping the gas well production. But when the water-cone break through and towards the well bottom, suffers from the influencing of gas-water two phase flows, permeability of gas phase decrease sharply and will have a serious impact on the production performance of the gas well. Moreover, the time when the water-cone breakthrough will directly affect the final recovery of the gas wells, therefore, the numerical simulation method is used to conduct the research on the key influencing factors of water-invasion performance for the gas wells with bottom-water, which is the basis of the mechanical model for the typical gas wells with bottom-water. It indicate that as followings: (1) the key influencing factors of water-invasion performance for the gas wells with bottom-water are those, such as the open degree of the gas beds, well gas production and the amount of Kv/Kh value; and (2) the barrier will be in charge of great significance on the water-controlling for the bottom water gas wells, and its radius is the key factor to affect water-invasion performance for the bottom water gas wells where the barriers exist nearby.


Sign in / Sign up

Export Citation Format

Share Document