Synthesis and Properties of Hybrid Materials for Ion-Exchange and Complexing Membranes

2013 ◽  
Vol 749 ◽  
pp. 283-288 ◽  
Author(s):  
Yury Pozhidaev ◽  
Oksana Lebedeva ◽  
Evgenya Sipkina ◽  
Alexandra Chesnokova ◽  
Nikolay Ivanov

Hybrid materials are attractive for a large range of applications from medicine and biotechnology to telecommunication systems and fuel cells. In the present research we have studied sol-gel synthesis of hybrid composites based on carbofunctional organosilicon monomers N,N-bis-(3-triethoxysilylpropyl) thiocarbamide (I) or 2-{[3-(triethoxysilyl) propyamino} pyridine (II), and copolymers of ethylene glycol vinyl glycidyl ether with vinyl chloride.The polymeric materials were characterized by scanning electron microscope (SEM) and IR-spectroscopy. Gel products possess high thermal stability (decomposition temperatures reach 250 °С) and have developed specific surface (to 20 m2g-1).The synthesized composites comprise semi-interpenetrating polymer networks, consisting of three-dimensional and linear polymers that cannot be separated due to the mechanical interlacing of theirs chains. Hybrid composites have a value of sorption capacity for Pt (IV) ions of 70 (I) and 28 (II) mgg-1. Proton conductivity of membranes based on the synthesized composites is characterized by the values 3.52 10-2(I) and 1.19 10-2(II) Scm-1measured at temperature of 25 °C.

2012 ◽  
Vol 62 (3) ◽  
pp. 281-286 ◽  
Author(s):  
Shang-Ru Zhai ◽  
Xu Shao ◽  
Di Zhou ◽  
Bin Zhai ◽  
Qing-Da An

2005 ◽  
Vol 873 ◽  
Author(s):  
Masanobu Naito ◽  
Takashi Nakai ◽  
Takuma Kawabe ◽  
Kenji Mori ◽  
Daisuke Furuta ◽  
...  

AbstractEnvironmentally friendly organic-inorganic hybrid materials with repellent activity against marine fouling organisms have been developed using interpenetrating polymer networks (IPNs), composed of a three-dimensional silica matrix of tetraethoxysilane (TEOS) and chain-like polymers, such as poly(methylmethacrylate) (PMMA) and poly(vinylacetate) (PVAc). The repellent activity of the IPNs reached a maximum of approximately 90% relative to that of tetrabutyl tin oxide (TBTO). Simple bioassays using blue mussels and algae were used to screen out the adequate proportions of those components.


2005 ◽  
Vol 38 (17) ◽  
pp. 7274-7285 ◽  
Author(s):  
Géraldine Rohman ◽  
Daniel Grande ◽  
Françoise Lauprêtre ◽  
Sylvie Boileau ◽  
Philippe Guérin

1995 ◽  
Vol 385 ◽  
Author(s):  
Barry J. Bauer ◽  
Catheryn L. Jackson ◽  
Da-Wei Liu

ABSTRACTInterpenetrating polymer networks have been synthesized by performing sol-gel chemistry and conventional organic polymerizations in mixtures of the monomers. The organic polymers were acrylates, and the inorganic phase was SiO2 formed by hydrolysis of orthosilicates. Polymerizations were conducted at a variety of relative rates, and the chemistry was designed to allow different amounts of grafting between the components. The morphology was characterized by transmission electron microscopy and small angle neutron and x-ray scattering. Wide variations in morphology were observed depending on the polymerization conditions, ranging from grossly phase separated to dendritic to finely divided structures (at a 100Å size scale). The phases ranged from mixtures of the two components to relatively pure phases. The interface between the phases ranged from very narrow to relatively broad.


2012 ◽  
Vol 557-559 ◽  
pp. 1533-1538 ◽  
Author(s):  
Shao Ling Xia ◽  
Lin Qi Zhang ◽  
Dong Mei Wang ◽  
Wen Jun Zou ◽  
Jin Peng ◽  
...  

Tribology behavior of Nanodiamond(ND) polyurethane(PU)/epoxy(EP) interpenetrating polymer networks hybrid materials were tested by friction wear testing machine. Results showed that when EP content was 30%, resultant PU/EP IPNs exhibited best wear resistance. For ND-PU/EP IPNs hybrids, when the ND addition was 0.2wt%, the best wear resistant ability was obtained. Under dry condition, the effect of wear parameters, such as rotational speed, load and central distance to friction and abrasion value were also investigated.


1992 ◽  
Vol 266 ◽  
Author(s):  
D. Feldman ◽  
D. Banu ◽  
M. Lacasse ◽  
J. Wang

AbstractLignin, a complex natural polymer produced by all vascular terrestrial plants is second in abundance only to cellulose and is the matrix holding plant fibres together. Lignins are recovered mainly as byproducts from woodpulping processes with about 100 million tons produced annually worldwide.Large volume uses for lignin byproduct other than for generation of energy (kraft process) are most likely to be in materials applications.In the last decades many studies aimed to the recycling of different lignins (sulfite, kraft, organosolv, steam exploded, hydrolytic, etc.) in polymeric systems based on thermoplastics, thermosettings, elastomers, adhesives, sealants, etc.Among all the technical lignins, sulfate lignins are chemically the most reactive and are therefore used to modify polymers. The oldest and the most familiar application of lignin as a component of polymeric materials involves the reinforcement of rubber. Multicomponent materials can be created by combination with other macromolecules like polyethylene, polypropylene, or poly(vinyl alcohol) to produce polyblends, block copolymers or interpenetrating polymer networks.The present communication will try to present such examples of polymeric systems based on recycled lignin, and synthetic polymers such as: polyurethane, epoxy, acrylics, silicones.


2009 ◽  
Vol 1207 ◽  
Author(s):  
Teng-Kuan Tseng ◽  
Jihun Choi ◽  
Mark Davidson ◽  
Paul H Holloway

AbstractA novel three dimensional (3D) self-assembled hierarchical bismuth oxide was prepared via a sol-gel synthesis with the aid of capping agent of polyethylene glycol-8000 (PEG-8000) at 85 ℃ in 45 min. The morphology evolution was studied versus reaction time and interpreted in terms of growth mechanisms. The as-grown 3D hierarchical flower-like bismuth oxide was crystalline cubic gamma-phase. The morphology and crystal phase of these 3D cubic gamma-phase bismuth oxide flowers were not changed with heating up to 600 ℃. The flower-like morphology was attributed to modification of the growth kinetics by the capping agent from the PEG-OH bond bridging with bismuth ions. Europium doped gadolinium oxide shell were further deposited on the bismuth oxide cores through sol-gel synthesis showing good photoluminescence characteristics at 610 and 622 nm under the excitation at 280 nm.


2021 ◽  
Author(s):  
Priscila Siqueira ◽  
Ana de Lima ◽  
Felipe Medeiros ◽  
Augusta Isaac ◽  
Katia Novack ◽  
...  

Abstract The hydrogels are advanced materials used in biomedical applications during wound healing, controlled drug release and to prepare scaffolds. In this work are prepared hydrogels of alginate/chitosan (Alg/Ch) semi-interpenetrating polymer networks (semi-IPN’s) and nanocelluloses. The hydrogels after preparation by freeze drying are namely simply as gels. The cellulose nanocrystals (CNC’s) are obtained from acid hydrolysis of bleached Eucalyptus pulps and oxidized cellulose nanocrystals (CNCT’s) prepared by (2,2,6,6-tetramethylpiperidin-1-yl)oxyl radical catalyzed reaction as known as TEMPO reaction. The cellulose nanofibers (NFC’s) are obtained from mechanical shearing of cellulose pulps and oxidized NFC’s by TEMPO-mediated reaction (NFCT’s). The nanocellulose suspension and gels are characterized by FTIR at ATR mode, TGA, XRD, TEM, SEM, X-ray computed microtomography (micro-CT) and DMTA. The addition of CNC’s, NFC’s, CNCT’s or NFCT’s in the microstructure of gels increases their dimensional stabilities. The best results are obtained when CNCT’s and NFCT’s are added. The mechanical properties and dimensional stability of Alg/Ch semi-IPN’s increase after controlled thermal post-treatment. The heating during thermal post-treatment boosts the physicochemical interactions in the microstructures of semi-IPN’s. The biological assays show biocompatibility of fibroblast cells on the substrates, and differentiation and proliferation up seven days. The optimized mechanical properties, dimensional stability and biocompatibility of the gels studied in this work are important parameters for potential biomedical applications of these biomaterials.


Author(s):  
Vahid Morovati ◽  
Mohammad Ali Saadat ◽  
Roozbeh Dargazany

Abstract Double network (DN) gels are three-dimensional polymer matrices formed by interpenetrating networks. In contrast to the conventional single-network gels, DN gels have significant toughness, which makes them a promising material for different biomedical and biological applications. However, DN gels show complicated inelastic behavior including the Mullins effect and necking instability. Despite extensive efforts on modelling different aspects of the damage process in gels, the micro-mechanical modelling of the mechanisms that lead to necking in DN gels remains to be a challenging task. Here, a constitutive model is proposed to understand and describe the mechanical behavior of DN gels based on statistical micro-mechanics of interpenetrating polymer networks. DN gels behavior is divided into three parts including pre-necking, necking, and hardening. The first network is dominant in the response of the gel in the pre-necking stage. The breakage of the first network to smaller network fractions (clusters) induces the stress softening observed in this stage. The interaction of both networks and the second network are also considered as main contributors to the response of gel in necking and hardening stages, respectively. The contribution of clusters decreases during the necking as the second network starts hardening. The numerical results of the proposed model are validated and compared by uni-axial cyclic tensile experimental data of DN gels.


Sign in / Sign up

Export Citation Format

Share Document