Design of Dual-PWM VVVF System Based on ARM

2013 ◽  
Vol 756-759 ◽  
pp. 569-573
Author(s):  
Jian Wei Liang ◽  
Ling Liang ◽  
Shu Ren Han

The article, three-phase squirrel cage induction motor as the research object, introduces the design of a new dual-PWM VVVF system based on ARM. The rectifier link design control strategies based on the power of the inner power loop and outer voltage square loop control system. The inverter link design a double infinite loop vector control speed regulation system of torque, flux linkage to the inner ring, rotational speed to the outer ring a double infinite loop vector control . And then, to combine rectifier link and inverter link to build dual-PWM VVVF system. Focuses on realization of the control system software and hardware-based LPC2132 and μ C/OS-II. Gives the hardware design of the overall program, as well as software realization based on the hardware μC/OS-IIoperating system . Introduce some of the specific features of the program as well as hardware and software anti-jamming technology . Conduct simulation verification to the dual-PWM VVVF system. The results show that: The dual-PWM control system can realize better control effect.

2012 ◽  
Vol 490-495 ◽  
pp. 2937-2941
Author(s):  
Feng Ou ◽  
Hong Chen ◽  
Xin Xiong

In order to ensure the stably operation for centrifuge, this paper presents a new speed regulation method based on the vector control technology, and designs the control system with the inverter for the centrifuge. The paper introduces the fundamental principal of vector control, and analyses the power and torque required for the centrifuge from the result of the calculation and simulation. At last, the paper shows the result the application of the vector control technology in centrifuge. The result shows that the vector control speed regulation system is simple, reliable, and its acceleration stability is very high. The analysis can also provide a reference for similar centrifuge design personnel


2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110087
Author(s):  
Peng Gao ◽  
Guangming Zhang

This study proposes a novel hierarchical nonlinear proportional-integral fast terminal sliding mode (HNLPIFTSM) control for permanent magnet synchronous motor (PMSM) speed regulation system. A new type of sliding surface called HNLPIFTSM surface, which combines the benefits of a nonlinear proportional-integral (PI) sliding mode surface and a fast terminal sliding mode (FTSM) surface, is proposed to enhance the robustness and improved the dynamic response, whilst preserving the great property of the conventional hierarchical fast terminal sliding mode (HFTSM) control strategy. The proposed HNLPIFTSM surface uses the novel nonlinear PI sliding mode surface as its inner loop and uses the FTSM surface as its outer loop. Meanwhile, an extended state observer (ESO) is used to estimate the uncertain terms of the PMSM speed regulation system. Furthermore, the stability of the closed-loop control system under the ESO and the HNLPIFTSM control strategy is proved by the Lyapunov stability theorem. Finally, the simulations and experimental demonstrations verify the effectiveness and superiorities of our proposed HNLPIFTSM control strategy over the conventional HFTSM control strategy.


2011 ◽  
Vol 219-220 ◽  
pp. 3-7
Author(s):  
Ning Zhang ◽  
Rong Hua Liu

An expert control system based on transient response patterns and expert system techniques is proposed in this paper. Depending on the features of the closed-loop control system determines the control decision and adjusts the parameters of the controller. The proposed method requires minimal proper information about the controlled plant and, with the linear re-excitation learning method, the system is kept satisfying the performance criterion.


2017 ◽  
Vol 3 (2) ◽  
pp. 363-366
Author(s):  
Tobias Steege ◽  
Mathias Busek ◽  
Stefan Grünzner ◽  
Andrés Fabían Lasagni ◽  
Frank Sonntag

AbstractTo improve cell vitality, sufficient oxygen supply is an important factor. A deficiency in oxygen is called Hypoxia and can influence for example tumor growth or inflammatory processes. Hypoxia assays are usually performed with the help of animal or static human cell culture models. The main disadvantage of these methods is that the results are hardly transferable to the human physiology. Microfluidic 3D cell cultivation systems for perfused hypoxia assays may overcome this issue since they can mimic the in-vivo situation in the human body much better. Such a Hypoxia-on-a-Chip system was recently developed. The chip system consists of several individually laser-structured layers which are bonded using a hot press or chemical treatment. Oxygen sensing spots are integrated into the system which can be monitored continuously with an optical sensor by means of fluorescence lifetime detection.Hereby presented is the developed hard- and software requiered to control the oxygen content within this microfluidic system. This system forms a closed-loop control system which is parameterized and evaluated.


2014 ◽  
Vol 722 ◽  
pp. 182-189
Author(s):  
Li Gang Ma ◽  
Chang Le Xiang ◽  
Tian Gang Zou ◽  
Fei Hong Mao

The paper proposes a cascade control strategy of speed feedback in inner loop and temperature feedback in outer ring for hydro-viscous driven fan cooling system, and compares the simulation of PID and fuzzy PID. The simulation result shows that the double-loop control system while the response time longer, but much smaller overshoot, can achieve a good feedback to adjust the fan speed and temperature and realize stepless speed regulation of hydro-viscous driven fan cooling system under the premise of stability for fan speed and system temperature.


2011 ◽  
Vol 418-420 ◽  
pp. 1865-1868
Author(s):  
Ming Jin Yang ◽  
Xi Wen Li ◽  
Zhi Gang Wang ◽  
Tie Lin Shi

The performance of speed regulating is very important to the mixing process with safe, efficient operation and high quality of production. Strategies and practices of responses and optimization of a PID-based speed regulating system of a planetary mixer were presented in this paper. Research results show that: by means of the signal constraint function presented by Simulink Response Optimization, optimization PID parameters of the 2-DOF-PID controller can be obtained, and the response of close-loop control system has quite good performance of overshoot, response time, and stability compared with an open-loop control system.


Author(s):  
Bahram Yaghooti ◽  
Ali Siahi Shadbad ◽  
Kaveh Safavi ◽  
Hassan Salarieh

In this article, an adaptive nonlinear controller is designed to synchronize two uncertain fractional-order chaotic systems using fractional-order sliding mode control. The controller structure and adaptation laws are chosen such that asymptotic stability of the closed-loop control system is guaranteed. The adaptation laws are being calculated from a proper sliding surface using the Lyapunov stability theory. This method guarantees the closed-loop control system robustness against the system uncertainties and external disturbances. Eventually, the presented method is used to synchronize two fractional-order gyro and Duffing systems, and the numerical simulation results demonstrate the effectiveness of this method.


Sign in / Sign up

Export Citation Format

Share Document