Numerical Optimization Research on Rear Characteristic Angles Based on MIRA Model for Aerodynamic Drag Reduction

2013 ◽  
Vol 774-776 ◽  
pp. 428-432
Author(s):  
Qian Qian Du ◽  
Xing Jun Hu ◽  
Qi Fei Li ◽  
Yu Kun Liu ◽  
Bo Yang

The rear characteristic angles of the passenger car in this study were defined as the inclination angle of rear window and the bottom inclination angle of aft based on the MIRA model. The numerical optimization method was used to analyze the influence of combined variation of two angles on the external flow field and the CD of the passenger car, in which we combined genetic algorithm with the CFD simulation to reduce aerodynamic drag by seeking the relatively optimal combination of two parameters above. The study reveals that when the combination of the inclination angle of rear window and bottom inclination angle of aft is 25oand 0.067o, the total pressure and streamline distribution in the flow fields of the MIRA model are improved greatly and the CD is reduced compared with the worst combination. This conclusion will have profound guiding significance in the aerodynamic design of the rear styling and shape of a car.

2012 ◽  
Vol 13 (4) ◽  
pp. 583-592 ◽  
Author(s):  
S. O. Kang ◽  
S. O. Jun ◽  
H. I. Park ◽  
K. S. Song ◽  
J. D. Kee ◽  
...  

Author(s):  
A N M Mominul Islam Mukut ◽  
Mohammad Zoynal Abedin

Due to higher price, limited supply and negative impacts on environment by fossil fuel, automobile industries have directed their concentrations in reducing the fuel consumption of vehicles in order to achieve the lower aerodynamic drag. As a consequence, numerous researches have been carried out throughout the world for not only getting the optimum aerodynamic design with lower drag penalty and but also other parameters that increases the fuel consumption. In this regard, relevant experimental and numerical outcomes on vehicle drag reduction considering various techniques such as active, passive and combined techniques in order to delay or suppress flow separation behind the vehicles have been considered in this review paper. Furthermore, the effects of drag reduction and their applicability on the vehicles are also illustrated in this paper. Therefore, it is conjectured that the drag reduction has been improved as much as 20%, 21.2%, and 30% by using the active, passive and combined control systems, respectively.


2013 ◽  
Vol 380-384 ◽  
pp. 69-72 ◽  
Author(s):  
Xu Yan ◽  
Xin Qiao ◽  
Zhi Ming Zhao ◽  
Jian Ye ◽  
Lei Liao ◽  
...  

In this paper, the external flow simulation has been carried out on a simplified passenger car model with two schemes adopted: a smoothed complex underbody and a flat underbody. The aerodynamic characteristics and the flow field structure of the passenger car model were obtained with CFD method, and the drag coefficients of the smoothed complex underbody and the flat underbody are respectively 0.275 and 0.251. According to the simulation, flow separation and energy loss of fluid was caused by protuberances on the complex underbody. As there are many differences between the aerodynamic characteristics of the smoothed underbody and the flat one, its suggested to use a smoothed complex underbody not a flat underbody in the studying of aerodynamic drag reduction of a passenger car.


Author(s):  
Feysal A. Adem ◽  
Dongmei Zhou ◽  
Pramod Krishnani

The flows over a pickup truck with add-on devises were studied using computational fluid dynamics (CFD) with the objective of investigating the effect of these add-no devices on the flow structures around the vehicle, aerodynamic drag, and lift coefficient. All numerical simulations were performed using commercial CFD software Fluent [8]. A generic pickup model with extended cab was used as the base model and all the flow simulations were performed at zero degree yaw angle. The pickup configurations used in the present CFD simulation include Aerocap with different rear inclination angle α, Tonneau cover, Rear Roof Garnish, and Tail-plates. Results from numerical simulations indicated that Aerocap with inclination angle α = 12° and a reduced rear width has produced the minimum aerodynamic drag coefficient. It was also shown that the wake region decrease when the rear inclination angle increases.


Author(s):  
Ziyu Guo ◽  
Yingchao Zhang ◽  
Wei Ding

An automatic optimization process is established employing computer-aided styling, computational fluid dynamics, grid deformation, an optimization method, and other digital simulation methods to reduce the computational time. Optimization was conducted for the aerodynamic shape of a hatchback car. Eight body design variables were selected after analysing the flow field. The first phase of body optimization was conducted for the front of the vehicle, the second phase for the rear of the vehicle, and the third phase for the global vehicle. Optimization reduced the front drag by 5.64%, then the rear drag by 7.21%, and finally the global drag by 10.34%, without changing the design style. There were interactions among those variables. The established process can be used in actual automotive styling.


2013 ◽  
Vol 307 ◽  
pp. 186-191 ◽  
Author(s):  
Peng Guo ◽  
Xing Jun Hu ◽  
Yun Yun Zhu ◽  
Qiang Fu ◽  
Xin Yu Wang ◽  
...  

Aerodynamic drag reduction of commercial truck at high speed is one of the important ways to reduce its energy consumption. CFD simulation and wind tunnel tests are performed on a kind of commercial truck, to study the influence of the cab shape and different kinds of guide cowls on aerodynamic drag, and the impact mechanism was also analyzed. It shows that the cab shape will make great contributions to the aerodynamic drag while the truck travelling, and through improving the shape of cab, guiding the air flow passed, it can effectively reduce the aerodynamic drag and achieve energy saving.


Fluids ◽  
2021 ◽  
Vol 6 (10) ◽  
pp. 365
Author(s):  
Zhendong Yang ◽  
Yifeng Jin ◽  
Zhengqi Gu

To reduce aerodynamic drag of a minivan, non-smooth surfaces are applied to the minivan’s roof panel design. A steady computational fluid dynamics (CFD) method is used to investigate the aerodynamic drag characteristics. The accuracy of the numerical method is validated by wind tunnel test. The drag reduction effects of rectangle, rhombus and arithmetic progression arrangement for circular concaves are investigated numerically, and then the aerodynamic drag coefficient of the rectangle arrangement with a better drag reduction effect is chosen as the optimization objective. Three parameters, that is, the diameter D of the circular concave, the width W and the longitudinal distance L among the circular concaves, are selected as design variables. A 20-level design of an experimental study using a Latin Hypercube scheme is conducted. The responses of 20 groups of sample points are obtained by CFD simulation, based on which a Kriging model is chosen to create the surrogate-model. The multi-island genetic algorithm is employed to find the optimum solution. The result shows that maximum drag reduction effects up to 7.71% can be achieved with a rectangle circular concaves arrangement. The reduction mechanism of the roof with the circular concaves was discussed. The circular concaves decrease friction resistance of the roof and change the flow characteristics of the recirculation area in the wake of the minivan. The roof with the circular concaves reduces the differential pressure drag of the front and rear of the minivan.


2012 ◽  
Author(s):  
Seung-On Kang ◽  
Jun-Ho Cho ◽  
Sang-Ook Jun ◽  
Hoon-Il Park ◽  
Ki-Sun Song ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document