Thermal Management System Analysis of Underwater Vehicle Fuel Cell Propulsion Unit

2013 ◽  
Vol 779-780 ◽  
pp. 857-860
Author(s):  
Hua Feng Li ◽  
Xiao Feng Wang ◽  
Xia Ming Kong ◽  
Xing Sheng Lao

A lumped parameter model is developed to study thermal management system performance of underwater vehicle equipping large power proton exchange membrane fuel cell propulsion unit. Fuel cell voltage current characteristic and heat release characteristic are represented by models which take effect of cooling water temperature into considered. Fuel cell stack performance models are validated against experimental data. Cooperated with experimental based models of water pump and heat exchanger, thermal management system performance is analyzed while fuel cell stack fresh cooling water outlet temperature is set to be at a certain value. The results show that inlet seawater temperature variation has little effect on opening of regulating valve, but engine power output variation results in notably regulating valve opening fluctuation. Modeling results would be employed in design of a underwater vehicle 300kW fuel cell engine system..

2021 ◽  
Vol 25 (4 Part B) ◽  
pp. 2923-2931
Author(s):  
Wenfeng Bai ◽  
Caofeng He

Vehicle fuel cell systems release a large amount of heat while generating electricity. The suitable thermal management system must be built to ensure system performance and reliability. Based on the analysis of the working principle of the vehicle fuel cell thermal management system, the paper establishes a control-oriented fuel cell thermal management. The stack, air cooler, hydrogen heat exchanger, bypass valve, heat sink, and cooling water circulating pump model are taking into account. System model, and the relationship between stack current, coolant flow rate, fin surface wind speed, bypass valve opening, and fuel cell temperature are in established in simulation experiments. The paper discusses their effects on system as a whole, air coolers, hydrogen heat exchangers, and the influence of the temperature difference between the inlet and outlet of the radiator. The simulation results can provide guidance and help to design the fuel cell thermal management control system.


Author(s):  
Sasank Viswanath Bethapudi ◽  
N. Rajalakshmi ◽  
K. S. Dhathathreyan

Activation of PEM fuel cell stack is an important factor in setting peak power of stack before its steady operations. Several methods of activation for larger capacity stacks involve operation of the stacks initially at low voltages under highly humidified conditions and at high temperatures. This is expected to improve proton conductivity of the membrane. For large area cells this method can create hot spots due to high current and non-uniform temperature distribution. Hence, an alternative approach for activating PEMFC stack at low current for vehicular applications has been investigated in this study. Conventional stack activation requires continuous supply of coolant. However for vehicular applications, a closed loop thermal management system is required. During the course of developing such a close loop thermal management system for transportation application, we have identified that the same system can be used in activating a PEM fuel cell stack. In the present study a 5kW PEMFC stack, operating on dry reactants, has been activated using a closed loop thermal management system. The activation has been carried out over a period of 620 minutes with 6 start/stop cycles. Through the start stop cycles the power delivered by the stack steadily increased from 2.5kW, to 5kW. Further, heat developed inside the fuel cell, as removed by the coolant water, has been studied and there is a proportional increase in the overall heat removed by the coolant to the total power delivered by the fuel cell. The start stop cycles are regulated based on the single cell voltages and stack temperature. Each cycle is stopped when the stack temperature reaches a set temperature of 50°C. The advantage of this procedure is that it will result in long life of the fuel cell stack, uniform membrane equilibration, and will avert hot spot generation in the electrodes at low cell potential.


Energy ◽  
2020 ◽  
Vol 199 ◽  
pp. 117495
Author(s):  
Jiamin Xu ◽  
Caizhi Zhang ◽  
Ruijia Fan ◽  
Huanhuan Bao ◽  
Yi Wang ◽  
...  

2019 ◽  
Vol 142 (6) ◽  
Author(s):  
Yiping Wang ◽  
Jing Li ◽  
Qi Tao ◽  
Mohamed H. S. Bargal ◽  
Mengting Yu ◽  
...  

Abstract Thermal management is an important factor in securing the safe and effective operation of a fuel cell vehicle (FCV). A parameterized stack model of a 100 kW proton exchange membrane fuel cell (PEMFC) is constructed by matlab/Simulink to design and asses the thermal management characteristics of a 100 kW full-powered FCV. The cooling components model, with parameters obtained by theoretical calculation based on the cooling requirement, is developed in the commercial solver GT-COOL. A thermal management simulation platform is constructed by coupling the stack model and cooling components. The accuracy of the modeling method for the stack is validated by comparing with the experimental data. The relationship between the operating temperature and output performance of the fuel cell stack is revealed based on the simulation model. The simulation results show that the operating temperature has a considerable influence on stack performance under high-current operation, and the inlet and outlet temperatures of the stack change nearly linearly with the increasing environmental temperature. The heat dissipation potential of the thermal management system under the high-load condition is also verified. The temperatures and coolant flow of core components, including the stack, DC/DC, air compressor, and driving motor, can meet the cooling requirements.


Sign in / Sign up

Export Citation Format

Share Document