Low Speed Electric Machine Used for Electric Generating from Savonius Windmill

2013 ◽  
Vol 789 ◽  
pp. 443-448 ◽  
Author(s):  
Y.B. Lukiyanto

Savonius windmill having advantages high starting torque and simple construction is applicable for Indonesia as a developing country with annual average wind speed 4,5 5,0 m/s. The purpose of the experiment is to identify characteristics of an electric machine used for low speed electric generator. The electric machine for the experiment is a permanent magnet electric motor usually used for electric bicycle. The electric motor is tested as an electric generator and rotated with variations of speed. Outputs of the generator are torque, voltage and current with 1) variation of lamps-load, 2) constant voltage-load for 12 volt and 24 volt battery charging and 3) combination of 12 volt battery charging and variation of lamps-load. The average efficiency of the generator is 59,8% and 65,4% for 12 volt and 24 volt battery charging. Battery charging starts at 95 rpm and maximum electric generating current is 20 Ampere at generator speed about 175 rpm.

2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Weijun Wang ◽  
Stéphane Caro ◽  
Fouad Bennis ◽  
Oscar Roberto Salinas Mejia

The aim of designing wind turbine blades is to improve the power capture ability. Since rotor control technology is currently limited to controlling rotational speed and blade pitch, an increasing concern has been given to morphing blades. In this paper, a simplified morphing blade is introduced, which has a linear twist distribution along the span and a shape that can be controlled by adjusting the twist of the blade's root and tip. To evaluate the performance of wind turbine blades, a numerical code based on the blade element momentum theory is developed and validated. The blade of the NREL Phase VI wind turbine is taken as a reference blade and has a fixed pitch. The optimization problems associated with the control of the morphing blade and a blade with pitch control are formulated. The optimal results show that the morphing blade gives better results than the blade with pitch control in terms of produced power. Under the assumption that at a given site, the annual average wind speed is known and the wind speed follows a Rayleigh distribution, the annual energy production of wind turbines was evaluated for three types of blade, namely, morphing blade, blade with pitch control and fixed pitch blade. For an annual average wind speed varying between 5 m/s and 15 m/s, it turns out that the annual energy production of the wind turbine containing morphing blades is 24.5% to 69.7% higher than the annual energy production of the wind turbine containing pitch fixed blades. Likewise, the annual energy production of the wind turbine containing blades with pitch control is 22.7% to 66.9% higher than the annual energy production of the wind turbine containing pitch fixed blades.


Author(s):  
Weijun Wang ◽  
Stéphane Caro ◽  
Fouad Bennis ◽  
Oscar Roberto Salinas Mejia

The aim of designing the wind turbine blades is to improve the power capture ability. Since the rotor control technology is currently limited to controlling the rotor rotational speed and the pitch of the blades, an increasing concern has been given to the morphing blades. In this paper, a simplified morphing blade is introduced, which has a linear twisted distribution along the span and its shape can be controlled by adjusting the root twisted angle and the tip twisted angle of the blade. Moreover, to evaluate the performances of the wind turbine blades, a numerical code based on the blade element momentum theory is developed and validated. The blade of the NREL Phase VI wind turbine is taken as a reference blade, and the optimization problems associated with the morphing blade and pitch control blade are both formulated. The optimal results show that the morphing blade gives better results than the pitch control blade in terms of produced power. Under the assumption that in a given site, the annual average wind speed is known and the wind speed follows the Rayleigh distribution, we can evaluate the annual energy produced by these three blade types. While the annual average wind speed varies from 5 m/s to 15 m/s, the results show that the optimal morphing blade can increase 23.9 percent to 71.4 percent in annual energy production while the optimal pitch control blade can increase 22.5 percent to 67.4 percent in annual energy production, over the existing twisted pitch fixed blade.


2014 ◽  
Vol 1008-1009 ◽  
pp. 164-168
Author(s):  
Fa Ming Wu ◽  
Lei Wang ◽  
Dian Wang ◽  
Jia Bao Jing

This paper analyzes three main factors (turbulence intensity, air density, annual average wind speed ) that influence the low wind speed wind turbine fatigue loads, In order to analyze the influence of each main parameters how to affect the fatigue load of low wind speed wind turbine, using a 2000kW wind turbine as an example on the simulation test , 3 turbulence, 4 air density and 7 annual average wind speed were employed. The results show that, with the air density, turbulence intensity and the annual average wind speed increases, the wind turbine of fatigue load increase in rule approximately. Based on the above rule, it can reduce fatigue loads and prolong the life of wind turbine in design optimization of low wind speed wind turbine and sit choice.


Author(s):  
Thomas J. Wenning ◽  
J. Kelly Kissock

This paper describes a methodology for a preliminary assessment of a region’s wind energy potential. The methodology begins by discussing four primary considerations for site location: wind resources, wildlife corridors, proximity to transmission grids, and required land area. Algorithms to calculate wind energy production using both hourly and annual average wind speed are presented. The hourly data method adjusts for differences in height, air density and terrain effects between the measurement site and the proposed turbine site. The annual average wind data method adjusts for these factors, and uses the average annual wind speed to generate a Rayleigh distribution of wind speeds over the year. Wind turbine electricity generation is calculated using the wind speed data and the turbine power curve. The lifecycle cost of electricity is calculated from operating costs, purchase costs, a discount rate, and the project lifetime. A case study demonstrates the use of the methodology to investigate the potential for producing electricity from wind turbines in Southwest Ohio. This information is useful to utilities, power producers and municipalities as they look to incorporate renewable energy generation into their portfolios.


2014 ◽  
Vol 1016 ◽  
pp. 554-558 ◽  
Author(s):  
Natapol Korprasertsak ◽  
Nataporn Korprasertsak ◽  
Thananchai Leephakpreeda

In Thailand, the average wind speed is generally quite low (≈ 3 - 4 m/s). Although Vertical Axis Wind Turbines (VAWTs) are designed for low speed wind, standalone VAWTs are still unable to generate power satisfactorily under that practical condition. This study introduces a new design of a wind flow controlling device, called a “wind booster”, by utilizing Computational Fluid Dynamics (CFD). A wind booster is developed for incorporating with a VAWT in order to increase the performance of the VAWT and to overcome the limitation of harvesting energy with low availability at low speed wind. The guiding and throttling effects of the optimal design of the wind booster are able to increase the angular velocity of VAWTs which leads to an increase in power generated from VAWTs.


Author(s):  
S. G. Ignatiev ◽  
S. V. Kiseleva

Optimization of the autonomous wind-diesel plants composition and of their power for guaranteed energy supply, despite the long history of research, the diversity of approaches and methods, is an urgent problem. In this paper, a detailed analysis of the wind energy characteristics is proposed to shape an autonomous power system for a guaranteed power supply with predominance wind energy. The analysis was carried out on the basis of wind speed measurements in the south of the European part of Russia during 8 months at different heights with a discreteness of 10 minutes. As a result, we have obtained a sequence of average daily wind speeds and the sequences constructed by arbitrary variations in the distribution of average daily wind speeds in this interval. These sequences have been used to calculate energy balances in systems (wind turbines + diesel generator + consumer with constant and limited daily energy demand) and (wind turbines + diesel generator + consumer with constant and limited daily energy demand + energy storage). In order to maximize the use of wind energy, the wind turbine integrally for the period in question is assumed to produce the required amount of energy. For the generality of consideration, we have introduced the relative values of the required energy, relative energy produced by the wind turbine and the diesel generator and relative storage capacity by normalizing them to the swept area of the wind wheel. The paper shows the effect of the average wind speed over the period on the energy characteristics of the system (wind turbine + diesel generator + consumer). It was found that the wind turbine energy produced, wind turbine energy used by the consumer, fuel consumption, and fuel economy depend (close to cubic dependence) upon the specified average wind speed. It was found that, for the same system with a limited amount of required energy and high average wind speed over the period, the wind turbines with lower generator power and smaller wind wheel radius use wind energy more efficiently than the wind turbines with higher generator power and larger wind wheel radius at less average wind speed. For the system (wind turbine + diesel generator + energy storage + consumer) with increasing average speed for a given amount of energy required, which in general is covered by the energy production of wind turbines for the period, the maximum size capacity of the storage device decreases. With decreasing the energy storage capacity, the influence of the random nature of the change in wind speed decreases, and at some values of the relative capacity, it can be neglected.


Author(s):  
Olga Leptiukhova ◽  
Marija Utkina

For more than half a century bicycle transport demonstrates its effectiveness as one of the elements of the transport network of the city. Currently, vehicles with low-power motors such as electric bicycle, electric scooter, gyrometer, segway, wheelbarrow, scooter motor and others are gaining people's attention. These vehicles can be combined into a group of low-speed individual vehicles (hereinafter - NITS) with similar re-quirements for the operational parameters of urban infrastructure. From the urban point of view, the interest in NITC is that the number of its users has increased significantly in recent years. The article presents the results of a sociological survey of residents of Serpukhov, allowing to assess the current and potential readi-ness of the population to use NITC. The growing popularity of NITC has led to an increase in the environmen-tal and economic effect, which is manifested at a particular level of development of the movement on NITC. The ecological and economic effect of the use of NITC has an extremely positive impact on the improvement of the urban environment. This article provides a list of indicators that reflect the growth in the standards of living of society from movement by the NITC, and the calculation of one of them - the increase in entrepre-neurial activity on the streets with increased traffic to the NITC. Indicators are necessary for calculation of complex criterion of efficiency and safety of street network due to development of the movement by NITC. The result will allow public authorities authorized to make decisions on the strategy of transport policy of cities to quantify the ratio of economic benefits from the development of infrastructure of the NITC with the cost of its construction and operation.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2796
Author(s):  
Andrzej Osuch ◽  
Ewa Osuch ◽  
Stanisław Podsiadłowski ◽  
Piotr Rybacki

In the introduction to this paper, the characteristics of Góreckie lake and the construction and operation of the wind-driven pulverizing aerator are presented. The purpose of this manuscript is to determine the efficiency of the pulverizing aerator unit in the windy conditions of Góreckie Lake. The efficiency of the pulverization aerator depends on the wind conditions at the lake. It was necessary to conduct thorough research to determine the efficiency of water flow through the pulverization segment (water pump). It was necessary to determine the rotational speed of the paddle wheel, which depended on the average wind speed. Throughout the research period, measurements of hourly average wind speed were carried out. It was possible to determine the efficiency of the machine by developing a dedicated mathematical model. The latest method was used in the research, consisting of determining the theoretical volumetric flow rates of water in the pulverizing aerator unit, based on average hourly wind speeds. Pulverization efficiency under the conditions of Góreckie Lake was determined based on 6600 average wind speeds for spring, summer and autumn, 2018. Based on the model, the theoretical efficiency of the machine was calculated, which, under the conditions of Góreckie Lake, amounted to 75,000 m3 per year.


Author(s):  
Sandip Kale ◽  
S. N. Sapali

Micro wind turbines installed in various applications, experience average wind speed for most of the time during operations. Power produced by the wind turbine is proportional to the cubic power of the wind velocity and a small increase in wind velocity results increases power output significantly. The approach wind velocity can be increased by covering traditional wind turbine with a diffuser. Researchers are continuously working to develop a compact, lightweight, cost effective and feasible diffuser for wind turbines. The present work carried out to develop a diffuser with these stated objectives. A compact, lightweight inclined flanged diffuser developed for a micro wind turbine. Bare micro wind turbine and wind turbine covered with developed efficient inclined flanged diffuser tested in the field as per International Electrotechnical Commission (IEC) standards and results presented in the form of power curves. The prediction of annual energy production for both wind turbines determined as per IEC standards.


Sign in / Sign up

Export Citation Format

Share Document