Spatial Information Based on the Multi-Objective Programming of Fuzzy Kernel Clustering Image Segmentation Algorithm

2013 ◽  
Vol 791-793 ◽  
pp. 1337-1340
Author(s):  
Xue Zhang Zhao ◽  
Ming Qi ◽  
Yong Yi Feng

Fuzzy kernel clustering algorithm is a combination of unsupervised clustering and fuzzy set of the concept of image segmentation techniques, But the algorithm is sensitive to initial value, to a large extent dependent on the initial clustering center of choice, and easy to converge to local minimum values, when used in image segmentation, membership of the calculation only consider the current pixel values in the image, and did not consider the relationship between neighborhood pixels, and so on segmentation contains noise image is not ideal. This paper puts forward an improved fuzzy kernel clustering image segmentation algorithm, the multi-objective problem, change the single objective problem to increase the secondary goals concerning membership functions, Then add the constraint information space; Finally, using spatial neighborhood pixels corrected membership degree of the current pixel. The experimental results show that the algorithm effectively avoids the algorithm converges to local extremism and the stagnation of the iterative process will appear problem, significantly lower iterative times, and has good robustness and adaptability.

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Ningning Zhou ◽  
Tingting Yang ◽  
Shaobai Zhang

Image segmentation plays an important role in medical image processing. Fuzzy c-means (FCM) is one of the popular clustering algorithms for medical image segmentation. But FCM is highly vulnerable to noise due to not considering the spatial information in image segmentation. This paper introduces medium mathematics system which is employed to process fuzzy information for image segmentation. It establishes the medium similarity measure based on the measure of medium truth degree (MMTD) and uses the correlation of the pixel and its neighbors to define the medium membership function. An improved FCM medical image segmentation algorithm based on MMTD which takes some spatial features into account is proposed in this paper. The experimental results show that the proposed algorithm is more antinoise than the standard FCM, with more certainty and less fuzziness. This will lead to its practicable and effective applications in medical image segmentation.


2015 ◽  
Vol 713-715 ◽  
pp. 1947-1950 ◽  
Author(s):  
Ming Hui Deng ◽  
Zhan Cheng Li ◽  
Shao Peng Zhu

Image segmentation and feature extraction are the premise for machine vision system to analyze and identify the image. Threshold image segmentation algorithm according to the method of two dimension threshold has a lot of calculation in calculating the threshold, and the minimum error threshold method can not use the spatial information of image. This paper presents an improved quantum-behaved particle swarm optimization based on the night segmentation and feature extraction technology. This paper introduces the QPSO algorithm based on multi group and multi stage improvement. The QPSO optimizing algorithm gradually approaches the global optimum threshold value to achieve better convergence and stability. An algorithm of vision image segmentation and feature extraction based on improved quantum-behaved particle swarm optimization is designed. Experimental results show that the optimization process of this algorithm has less control parameters and faster convergence speed.


2019 ◽  
Vol 65 (No. 8) ◽  
pp. 321-329
Author(s):  
Haitao Wang ◽  
Yanli Chen

Because the image fire smoke segmentation algorithm can not extract white, gray and black smoke at the same time, a smoke image segmentation algorithm is proposed by combining rough set and region growth method. The R component of the image is extracted in the RGB colour space, the roughness histogram is constructed according to the statistical histogram of the R component, and the appropriate valley value in the roughness histogram is selected as the segmentation threshold, the image is roughly segmented. Relative to the background image, the smoke belongs to the motion information, and the motion region is extracted by the interframe difference method to eliminate static interference. Smoke has a unique colour feature, a smoke colour model is created in the RGB colour space, the motion disturbances of similar colour are removed and the suspected smoke areas are obtained. The seed point is selected in the region, and the region is grown on the result of rough segmentation, the smoke region is extracted. The experimental results show that the algorithm can segment white, gray and black smoke at the same time, and the irregular information of smoke edges is relatively complete. Compared with the existing algorithms, the average segmentation accuracy, recall rate and F-value are increased by 19%, 21.5% and 20%, respectively.<br /><br />


Sign in / Sign up

Export Citation Format

Share Document