Production of High Nitrogen Stainless Steel X8CrMnN18-18 through EAF-AOD-LRF-CC-Steckel Mill Route and its Hot Deformation Study by Gleeble Thermomechanical Simulator

2013 ◽  
Vol 794 ◽  
pp. 429-440
Author(s):  
Sudipta Patra ◽  
Lokesh Kumar Singhal

High nitrogen containing austenitic stainless steel X8CrMnN18-18 exhibits attractive combination of high strength, toughness and corrosion resistance.This grade containing more than 5000 ppm of nitrogen was produced commercially through EAF-AOD-LRF-CC-Steckel mill route and its microstructure and mechanical properties were studied. Excellent combination of strength,ductility and toughness is achieved in the entire range of 6mm to 50mm thick hot rolled plates. Uniaxial compression tests were carried out to understand the hot deformation behavior by varying temperature and strain rate. Softening behavior during deformation was analyzed from flow stress strain curves and microstructural analysis. Dynamic recrystallization (DRX) behavior of the material was observed during thermo mechanical processing. Critical strain related to DRX and Avrami kinetics of DRX was calculated by analyzing the flow curve data. Microstructural characterization was done by optical microscopy and EBSD analysis. Extensive grain refinement can be achieved by thermo-mechanical processing controlled by DRX. Keywords: High nitrogen stainless steel, Strength and toughness, DRX, Grain refinement, TMCP

2020 ◽  
Vol 174 ◽  
pp. 108847
Author(s):  
H. Zhang ◽  
P. Xue ◽  
L.H. Wu ◽  
Q.N. Song ◽  
D. Wang ◽  
...  

2010 ◽  
Vol 638-642 ◽  
pp. 1811-1816 ◽  
Author(s):  
Chun Jiang Kuang ◽  
H. Zhong ◽  
D. Chen ◽  
X. Kuang ◽  
Q. Li ◽  
...  

Nitrogen alloying in steel may greatly increase the strength and corrosion resistance of the material. This paper introduced some research results of high nitrogen stainless steel (HNS) investigation via PM process. Nickel free high nitrogen stainless steels (17Cr12Mn2MoN) and superaustenitic high nitrogen stainless steels (28Cr6Mn2/6Mo10/20NiN) were investigated via gas atomization and HIP processes. Nitrogen alloying behavior during atomization and consolidation processes was investigated. Powders with nitrogen content up to 1% were manufactured by gas atomization process. Nickel free high nitrogen stainless steels with nitrogen up to 0.6% exhibits high strength and ductility at as-HIPed and solution annealed state, and superaustenitic HNS with nitrogen content up to 1% showed very high strength and good ductility at solution annealed state, with b at 1100 MPa, s at 810 MPa and elongation of 43%. PM HNS exhibited excellent corrosion resistance.


2002 ◽  
Vol 17 (5) ◽  
pp. 991-1001 ◽  
Author(s):  
X. Y. Qin ◽  
J. S. Lee ◽  
C. S. Lee

The microstructures and mechanical behavior of bulk nanocrystalline γ–Ni–xFe (n-Ni–Fe) with x = ∼19–21 wt%, synthesized by a mechanochemical method plus hot-isostatic pressing, were investigated using microstructural analysis [x-ray diffraction, energy-dispersive spectroscopy, light emission spectrum, atomic force microscopy (AFM), and optical microscopy (OM)], and mechanical (indentation and compression) tests, respectively. The results indicated that the yield strength (σ0.2) of n-Ni–Fe (d ∼ 33 nm) is about 13 times greater than that of conventional counterpart. The change of yield strength with grain size was basically in agreement with Hall–Petch relation in the size range (33–100 nm) investigated. OM observations demonstrated the existence of two sets of macroscopic bandlike deformation traces mostly orienting at 45–55° to the compression axis, while AFM observations revealed that these bandlike traces consist of ultrafine lines. The cause for high strength and the possible deformation mechanisms were discussed based on the characteristics of microstructures and deformation morphology of n-Ni–Fe.


2012 ◽  
Vol 715-716 ◽  
pp. 115-121
Author(s):  
Hai Wen Luo ◽  
Xu Dong Fang ◽  
Rui Zhen Wang ◽  
Zhan Yin Diao

Dynamic recrystallization was studied for the stainless steels with nitrogen contents of 0.56% to 1.08% during hot deformation at temperatures of 900~1200 with strain rates ranging from 0.003 to 42 s-1. It was found that flow stress could increase remarkably with increasing nitrogen content. Flow curves during the deformation by 0.1~42/s at temperatures of 900~1200°C show a single peak, indicating the occurrence of dynamic recrystallization during deformation. The peak strain seems to decrease with increasing N content, suggesting that higher content of N facilitates dynamic recrystallization. The quenched microstructures were analyzed by optical microscopy, EBSD and TEM. The recrystallized grain sizes on the quenched specimens were measured and its dependence on temperature and strain rate was analyzed. At high temperature, continuously dynamically recrystallized microstructures were observed; whilst at low temperature, necklace-like partially recrystallized microstructures were found. Key words: High nitrogen stainless steel; dynamic recrystallization; stress-strain curves


2018 ◽  
Vol 67 (1) ◽  
Author(s):  
Yanxin Qiao ◽  
Zhaohui Tian ◽  
Xiang Cai ◽  
Jian Chen ◽  
Yuxin Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document