Evaluation of Functional Underwear for Firefighter Clothing by Total Heat Loss

2013 ◽  
Vol 796 ◽  
pp. 617-622 ◽  
Author(s):  
Kaoru Wakatsuki ◽  
Hajime Tsuji ◽  
Takehiro Kato ◽  
Yoshio Ogawa

Synthetic textile such as polyester and poly-urethane has been used for underwear in terms of moisture release and function in underwear. However, the synthetic underwear has high risk for skin burns due to melting and shrinking by heat. Thermal protection and comfort in fire fighter protective clothing is always trading off, but fire fighters tend to use the synthetic underwear to feel comfort and function during firefighting operation without understanding of the risk for skin burns by the textile. Objective of this study is to investigate if the synthetic underwear plays a significant role in moisture and metabolic heat transfer within the fire fighter clothing by total heat loss measurement. Measurement of the total heat loss has been conducted by the ASTM F-1868 instrument (Kato-Tech, Co. Ltd., Japan). Three type of fire fighter clothing, one station wear, and five types of underwear have been used for the test. Test has been conducted for each clothing and combination of clothing. The results shows that range of total heat loss is 322.3 W/m2 to 385.3 W/m2, 857.9 W/m2, 782.3 W/m2 to 897.3 W/m2 for three fire fighter clothing, one station wear and five underwear, respectively. However, when the fabrics of fire fighter clothing, station wear and underwear were piled up, the range of total heat loss decreased to 242.1 W/m2 to 304.4 W/m2. The data indicates that the fire fighter's multi-layer fabric controls the heat and moisture transfer within fire fighter clothing and no positive contribution by any types of underwear.

2015 ◽  
Vol 15 (1) ◽  
pp. 35-47 ◽  
Author(s):  
Onofrei Elena ◽  
Teodor-Cezar Codau ◽  
Petrusic Stojanka ◽  
Bedek Gauthier ◽  
Dupont Daniel ◽  
...  

Abstract In this study we analysed the effect of moisture on the thermal protective performance of fire-fighter clothing in case of routine fire-fighting conditions. In the first stage of this research we investigated simultaneous heat and moisture transfer through a single-layer fabric, used as underwear for fire-fighters, at different moisture conditions. In the second stage of the study, the underwear in dry and wet state was tested together with protective clothing systems for fire-fighter consisting of three or four layers. It was found that during the evaporation of the moisture, a temperature plateau appeared during which temperatures hardly rose. The energy consumption used for the phase change of moisture located in the assembly dominated the heat transfer process as long as there was moisture present. As soon as all water had evaporated, the temperatures approached the temperatures measured for dry samples. The moisture within the clothing assembly did not lead to increased temperatures compared with the measurements with dry samples. This research has confirmed that moisture can positively affect the thermal protection of a clothing system.


2018 ◽  
Vol 42 (6) ◽  
pp. 2284-2289 ◽  
Author(s):  
Qiangqiang Zhang ◽  
Xin Li ◽  
Zhifeng Wang ◽  
Zhi Li ◽  
Hong Liu ◽  
...  

2018 ◽  
Vol 103 (3) ◽  
pp. 312-317 ◽  
Author(s):  
Dallon T. Lamarche ◽  
Sean R. Notley ◽  
Martin P. Poirier ◽  
Glen P. Kenny

2019 ◽  
Vol 23 (Suppl. 4) ◽  
pp. 1301-1310
Author(s):  
Ramola Sinha ◽  
Nitin Gulhane ◽  
Jan Taler ◽  
Pawel Oclon

The share of solar thermal energy for process heat at sub cooled temperature is estimated about 30% of the total demand. The assessment of heat loss from tubular receiver used for the process heat is necessary to improve the thermal efficiency and consequently the cost effectiveness of the parabolic dish receiver system. The study considers a modified three coil solar cavity receiver of wall area three times (approximately) as compared to the existing single coil receiver and experimentally investigates the effect of increases in cavity inner wall area, fluid inlet temperature (50-75?C), and cavity inclination angle (? = 0-90?) on the combined (total) heat loss from receiver under no wind condition. This paper also develops an analytical model to estimate the different mode of heat losses from the downward facing receiver. In the mean fluid temperature range of 50?C to 70?C, the total heat loss from three coil receiver is reduced up to 40.98% at 90? and 20% at 0? inclination, as compared to single coil receiver. The analytical modeling estimates very low heat loss from conduction (1-3%) and radiation (2-8%) and high heat loss from convection (97-89%). The heat loss by natural convection decreases sharply with increase in cavity inclination, while the heat loss by radiation and conduction increases slowly with inclination. A three coil cavity receiver might be considered in the design to reduce heat loss from parabolic dish receiver system to improve the thermal performance and cost effectiveness.


Sign in / Sign up

Export Citation Format

Share Document