Sensitivity of the total heat loss coefficient determined by the energy signature approach to different time periods and gained energy

2009 ◽  
Vol 41 (7) ◽  
pp. 801-808 ◽  
Author(s):  
J.-U. Sjögren ◽  
S. Andersson ◽  
T. Olofsson
2018 ◽  
Vol 42 (6) ◽  
pp. 2284-2289 ◽  
Author(s):  
Qiangqiang Zhang ◽  
Xin Li ◽  
Zhifeng Wang ◽  
Zhi Li ◽  
Hong Liu ◽  
...  

2018 ◽  
Vol 103 (3) ◽  
pp. 312-317 ◽  
Author(s):  
Dallon T. Lamarche ◽  
Sean R. Notley ◽  
Martin P. Poirier ◽  
Glen P. Kenny

2019 ◽  
Vol 23 (Suppl. 4) ◽  
pp. 1301-1310
Author(s):  
Ramola Sinha ◽  
Nitin Gulhane ◽  
Jan Taler ◽  
Pawel Oclon

The share of solar thermal energy for process heat at sub cooled temperature is estimated about 30% of the total demand. The assessment of heat loss from tubular receiver used for the process heat is necessary to improve the thermal efficiency and consequently the cost effectiveness of the parabolic dish receiver system. The study considers a modified three coil solar cavity receiver of wall area three times (approximately) as compared to the existing single coil receiver and experimentally investigates the effect of increases in cavity inner wall area, fluid inlet temperature (50-75?C), and cavity inclination angle (? = 0-90?) on the combined (total) heat loss from receiver under no wind condition. This paper also develops an analytical model to estimate the different mode of heat losses from the downward facing receiver. In the mean fluid temperature range of 50?C to 70?C, the total heat loss from three coil receiver is reduced up to 40.98% at 90? and 20% at 0? inclination, as compared to single coil receiver. The analytical modeling estimates very low heat loss from conduction (1-3%) and radiation (2-8%) and high heat loss from convection (97-89%). The heat loss by natural convection decreases sharply with increase in cavity inclination, while the heat loss by radiation and conduction increases slowly with inclination. A three coil cavity receiver might be considered in the design to reduce heat loss from parabolic dish receiver system to improve the thermal performance and cost effectiveness.


Author(s):  
Manoj Kumar Dash ◽  
Sukanta Kumar Dash

Abstract The present work reports a comparative analysis of natural convection heat transfer from a thick hollow vertical cylinder either placed on the ground or suspended in the air. The numerical simulations have been performed by varying the cylinder length to its outer diameter (L/Do) in the range of 0.2–20, the thickness ratio (Di/Do) in a range of 0.5–0.9, and Rayleigh number (Ra) from 104 to 108. The flow and heat transfer characteristics have been delineated precisely with the presentation of the thermal plume and flow field in the vicinity of the cylinder. The variation of average Nusselt number (Nu), local Nu, and contribution to total heat loss from different surfaces with the pertinent parameters have been elucidated graphically. The average Nu is always more for the cylinder in the air compared with the case when it is on the ground. However, the difference between the Nu for these two cases diminishes, as the L/Do increases. It has also been found that the contribution to total heat loss from the inner surface of the hollow cylinder suspended in air increases with L/Do, attains a peak, and decreases sharply. Cooling time curves for the cylinder placed in air or on the ground have been described precisely. Finally, a correlation for the average Nusselt number as a function of all the pertinent parameters has been proposed that can be useful for industrial and academic purposes.


2019 ◽  
Vol 44 (1) ◽  
pp. 99-102 ◽  
Author(s):  
Dallon T. Lamarche ◽  
Sean R. Notley ◽  
Martin P. Poirier ◽  
Glen P. Kenny

We evaluated whether self-reported physical activity (PA) level modulates whole-body total heat loss (WB-THL) as assessed using direct calorimetry in 10 young adults (aged 22 ± 3 years) matched for rate of peak oxygen consumption (an index for aerobic fitness), but of low and high self-reported PA, during 3 incremental cycling bouts (∼39%, 52%, and 64% peak oxygen consumption) in the heat (40 °C). We showed that level of self-reported PA does not appear to influence WB-THL independently of peak oxygen consumption.


2019 ◽  
Vol 128 ◽  
pp. 01006 ◽  
Author(s):  
Ramola Sinha ◽  
Nitin P. Gulhane ◽  
Paweł Ocłoń ◽  
Jan Taler ◽  
Rahimi Gorji

The heat loss from cavity receiver in parabolic dish system determines the efficiency and cost effectiveness of the system. A modified three coil solar cavity receiver of inner wall area approximately three times of single coil receiver, is experimentally investigated to study the effect of fluid inlet temperature (Tfi=50°C to 75 °C) and cavity inclination angle (θ = 0° to 90°) on the heat loss from receiver under wind condition for head on wind and side on wind velocity at 3 m/s. Overall it was found that the natural and forced convection total heat loss increases with increase in mean fluid temperature. The combined heat loss decreases sharply with the increase in cavity inclination and observed to be maximum for horizontal position of receiver and minimum with the receiver facing vertically downward for all investigations. The maximum heat lossin wind test (V=3m/s) is 1045 W at θ=0° cavity inclination at mean fluid temperature 68 °C and minimum at 173 W θ=90° at 53°C. Total heat loss from the receiver under wind condition (V=3m/s) is up to 25% higher(1.25 times at 0° inclination) than without wind at mean fluid temperature ~70°C and minimum 19.64 % (1.2 times at 90° inclination) in mean temperature ~50 °C . In horizontal position of the receiver (θ=0°), the totalheat loss by head on wind is about 1.23 times (18% higher ) as compared to side on wind (at fluid mean temperature ~ 70°C). For receiver facing downward (θ=90°), for head-on wind, total heat loss is approximately the same as that for side-on wind.


2012 ◽  
Vol 27 (1) ◽  
pp. 53-58 ◽  
Author(s):  
Otto Henriksson ◽  
Peter Lundgren ◽  
Kalev Kuklane ◽  
Ingvar Holmér ◽  
Peter Naredi ◽  
...  

AbstractIntroduction: In the prehospital care of a cold and wet person, early application of adequate insulation is of utmost importance to reduce cold stress, limit body core cooling, and prevent deterioration of the patient’s condition. Most prehospital guidelines on protection against cold recommend the removal of wet clothing prior to insulation, and some also recommend the use of a waterproof vapor barrier to reduce evaporative heat loss. However, there is little scientific evidence of the effectiveness of these measures.Objective: Using a thermal manikin with wet clothing, this study was conducted to determine the effect of wet clothing removal or the addition of a vapor barrier on thermal insulation and evaporative heat loss using different amounts of insulation in both warm and cold ambient conditions.Methods: A thermal manikin dressed in wet clothing was set up in accordance with the European Standard for assessing requirements of sleeping bags, modified for wet heat loss determination, and the climatic chamber was set to -15 degrees Celsius (°C) for cold conditions and +10°C for warm conditions. Three different insulation ensembles, one, two or seven woollen blankets, were chosen to provide different levels of insulation. Five different test conditions were evaluated for all three levels of insulation ensembles: (1) dry underwear; (2) dry underwear with a vapor barrier; (3) wet underwear; (4) wet underwear with a vapor barrier; and (5) no underwear. Dry and wet heat loss and thermal resistance were determined from continuous monitoring of ambient air temperature, manikin surface temperature, heat flux and evaporative mass loss rate.Results: Independent of insulation thickness or ambient temperature, the removal of wet clothing or the addition of a vapor barrier resulted in a reduction in total heat loss of 19-42%. The absolute heat loss reduction was greater, however, and thus clinically more important in cold environments when little insulation is available. A similar reduction in total heat loss was also achieved by increasing the insulation from one to two blankets or from two to seven blankets.Conclusion: Wet clothing removal or the addition of a vapor barrier effectively reduced evaporative heat loss and might thus be of great importance in prehospital rescue scenarios in cold environments with limited insulation available, such as in mass-casualty situations or during protracted evacuations in harsh conditions.


Sign in / Sign up

Export Citation Format

Share Document