scholarly journals Fitness-related differences in the rate of whole-body total heat loss in exercising young healthy women are heat-load dependent

2018 ◽  
Vol 103 (3) ◽  
pp. 312-317 ◽  
Author(s):  
Dallon T. Lamarche ◽  
Sean R. Notley ◽  
Martin P. Poirier ◽  
Glen P. Kenny
2019 ◽  
Vol 44 (1) ◽  
pp. 99-102 ◽  
Author(s):  
Dallon T. Lamarche ◽  
Sean R. Notley ◽  
Martin P. Poirier ◽  
Glen P. Kenny

We evaluated whether self-reported physical activity (PA) level modulates whole-body total heat loss (WB-THL) as assessed using direct calorimetry in 10 young adults (aged 22 ± 3 years) matched for rate of peak oxygen consumption (an index for aerobic fitness), but of low and high self-reported PA, during 3 incremental cycling bouts (∼39%, 52%, and 64% peak oxygen consumption) in the heat (40 °C). We showed that level of self-reported PA does not appear to influence WB-THL independently of peak oxygen consumption.


1981 ◽  
Vol 45 (2) ◽  
pp. 257-267 ◽  
Author(s):  
M. J. Dauncey

1. It has been suggested previously that people in developed countries do not expose themselves to cold severe enough to induce a metabolic response. The energy expenditure, as both heat production and total heat loss, of nine women was therefore measured continuously while each lived for 30 h in a whole-body calorimeter on two occasions, one at 28° and the other at 22°. All subjects followed a predetermined pattern of activity and food intake. The environmental conditions were judged by the subjects to be within those encountered in everyday life. In the standard clothing worn, 28° was considered to be comfortably warm but not too hot, while 22° was judged to be cool but not too cold.2. Heat production for 24 h was significantly greater at the lower temperature, by (mean ± SE) 7.0 ± 1.1%. The range was between 2 and 12%. Total heat loss was also significantly greater, by 6%, and there was a large change in the partition of heat loss. At the lower temperature sensible heat loss increased by 29% while evaporative heat loss decreased by 39%.3. Resting metabolism measured in the morning 12–13 h after the last meal was significantly greater at 22° than at 28°, whereas there was no difference when the resting measurement was made for 2.5 h following a meal.4. In conclusion: (a)environmental temperature may play a more important role than was previously recognized in the energy balance of those living in this country, and (b) there is an indication of at least a partial replacement of cold-induced by diet-induced thermogenesis in man.


2008 ◽  
Vol 294 (5) ◽  
pp. R1586-R1592 ◽  
Author(s):  
Ollie Jay ◽  
Daniel Gagnon ◽  
Michel B. DuCharme ◽  
Paul Webb ◽  
Francis D. Reardon ◽  
...  

Previous studies report greater postexercise heat loss responses during active recovery relative to inactive recovery despite similar core temperatures between conditions. Differences have been ascribed to nonthermal factors influencing heat loss response control since elevations in metabolism during active recovery are assumed to be insufficient to change core temperature and modify heat loss responses. However, from a heat balance perspective, different rates of total heat loss with corresponding rates of metabolism are possible at any core temperature. Seven male volunteers cycled at 75% of V̇o2peak in the Snellen whole body air calorimeter regulated at 25.0°C, 30% relative humidity (RH), for 15 min followed by 30 min of active (AR) or inactive (IR) recovery. Relative to IR, a greater rate of metabolic heat production (Ṁ − Ẇ) during AR was paralleled by a greater rate of total heat loss (ḢL) and a greater local sweat rate, despite similar esophageal temperatures between conditions. At end-recovery, rate of body heat storage, that is, [(Ṁ − Ẇ) − ḢL] approached zero similarly in both conditions, with Ṁ − Ẇ and ḢL elevated during AR by 91 ± 26 W and 93 ± 25 W, respectively. Despite a higher Ṁ − Ẇ during AR, change in body heat content from calorimetry was similar between conditions due to a slower relative decrease in ḢL during AR, suggesting an influence of nonthermal factors. In conclusion, different levels of heat loss are possible at similar core temperatures during recovery modes of different metabolic rates. Evidence for nonthermal influences upon heat loss responses must therefore be sought after accounting for differences in heat production.


1968 ◽  
Vol 10 (2) ◽  
pp. 135-147 ◽  
Author(s):  
C. W. Holmes

1. A direct calorimeter is described, capable of partitioning the total heat loss from individual pigs into its evaporative and non-evaporative components; tests revealed that the instrument measured non-evaporative heat loss with a coefficient of variation of 3%, and evaporative heat loss with a coefficient of variation of 5·0% at 10° and 20°C, and 5·6% at 30°C.2. Experiments were carried out to measure the differences between heat losses at 20° and 9°C, or at 20° and 30°C, for pigs weighing approximately 26 kg and 64 kg; each measurement lasted 20 minutes and was made after an equilibration period of 3–4 hr.3. Heat loss was proportional to body weight raised to the power of 0·6, under the present experimental conditions, over the range 26–64 kg at 20°C.4. Total heat loss at 9°C was significantly greater than at 20°C for pigs of both sizes; total heat loss at 30°C was smaller than at 20°C for pigs of both sizes, the decrease being significant for the heavier pigs only. Nonevaporative heat loss increased significantly with decrease in temperature. Evaporative heat loss at 30°C was significantly greater than at 20°C. The increases in total and non-evaporative heat losses at 9°C when compared with 20°C, were significantly greater for the lighter pigs than for the heavier pigs. The small decrease in total heat loss at 30°C, compared with 20°C, may have been due to non-attainment of thermal equilibrium at 30°C.5. Values for whole body thermal conductance were calculated from the measurements of non-evaporative heat loss, and these indicated that a change in tissue conductance took place between 20° and 30°C; the mean values at 9°C were 3·78 and 3·15 kcal/°C.m2.hr for the lighter and heavier pigs respectively.6. Evaporative heat loss at 20°C amounted to 280 and 330 kcal/m2. 24. hr for the lighter and heavier pigs respectively. This component of heat loss amounted to 8% and 13% of the total heat loss at 9° and 20°C respectively for all pigs; the corresponding values at 30°C were 32% and 25% for the lighter and heavier pigs respectively. The increased evaporative loss at 30°C was accompanied by an increase in respiratory rate.7. These results agreed well with the results of previous work with groups of pigs, for heat loss at 20°C. Comparisons with that work indicate that the increase in heat loss at 9°C, when compared with 20°C, was greater for individual pigs than for groups of pigs, of both sizes.


2018 ◽  
Vol 42 (6) ◽  
pp. 2284-2289 ◽  
Author(s):  
Qiangqiang Zhang ◽  
Xin Li ◽  
Zhifeng Wang ◽  
Zhi Li ◽  
Hong Liu ◽  
...  

2020 ◽  
Vol 319 (2) ◽  
pp. E438-E446
Author(s):  
Vojtěch Škop ◽  
Naili Liu ◽  
Juen Guo ◽  
Oksana Gavrilova ◽  
Marc L. Reitman

Understanding mouse thermal physiology informs the usefulness of mice as models of human disease. It is widely assumed that the mouse tail contributes greatly to heat loss (as it does in rat), but this has not been quantitated. We studied C57BL/6J mice after tail amputation. Tailless mice housed at 22°C did not differ from littermate controls in body weight, lean or fat content, or energy expenditure. With acute changes in ambient temperature from 19 to 39°C, tailless and control mice demonstrated similar body temperatures (Tb), metabolic rates, and heat conductances and no difference in thermoneutral point. Treatment with prazosin, an α1-adrenergic antagonist and vasodilator, increased tail temperature in control mice by up to 4.8 ± 0.8°C. Comparing prazosin treatment in tailless and control mice suggested that the tail’s contribution to total heat loss was a nonsignificant 3.4%. Major heat stress produced by treatment at 30°C with CL316243, a β3-adrenergic agonist, increased metabolic rate and Tb and, at a matched increase in metabolic rate, the tailless mice showed a 0.72 ± 0.14°C greater Tb increase and 7.6% lower whole body heat conductance. Thus, the mouse tail is a useful biomarker of vasodilation and thermoregulation, but in our experiments contributes only 5–8% of whole body heat dissipation, less than the 17% reported for rat. Heat dissipation through the tail is important under extreme scenarios such as pharmacological activation of brown adipose tissue; however, non-tail contributions to heat loss may have been underestimated in the mouse.


Sign in / Sign up

Export Citation Format

Share Document