scholarly journals The usage of phase change materials in fire fighter protective clothing: its effect on thermal protection

Author(s):  
Mengmeng Zhao
2019 ◽  
Vol 6 ◽  
pp. 28-37
Author(s):  
Josef Richmond ◽  
Lesley Spencer ◽  
Tommy Tran ◽  
Evan Williams

Firefighters are exposed to high risk scenarios in which the prevention of extreme heat injuries is largely dependent on the effectiveness of their protective clothing. The following meta-study examines contemporary literature to determine the usefulness of phase change materials (PCM’s) in improving the effectiveness of the current firefighter protective clothing (FFPC) model in order to better protect firefighters. The time- temperature for multiple PCM’s in environments with low, medium and high heat fluxes (taken as 2.5-5 kW/m2 for 700 seconds, 10-15 kW/m2 for 300 seconds and 20-40 kW/m2for 30 seconds respectively) were compared in terms of the rate of temperature increase and final temperature. The study found that PCM I produced the best temperature reduction in a low flux, PCM K did so in a medium flux, and PCM B did so in a high flux. The study also found that overall the PCMs were most effective in a low flux, therefore further study should be directed towards creating PCMs that are more effective in high-flux environments. Keywords: Phase Change Material; Fire Fighter Protective Clothing; Heat Flux


2013 ◽  
Vol 796 ◽  
pp. 649-652 ◽  
Author(s):  
Xiao Xiao Li ◽  
Yu Chai Sun ◽  
Jing Yu Xu ◽  
Rou Xi Chen

In low temperature environment, the lack of a proper thermal protection can cause human body frostbite, or even cause death. In this paper, the computational method of theoretical relationship between the phase change materials content in protective clothing, protective time and the working environment temperature was proposed when took into account the comfort requirement of human bodies, clothing thermal properties and heat loss through clothing system. This theoretical model could be used to predict the relationship between the protective material content and the protection time of phase change protective clothing. Experimental results show good accordance with the theoretical prediction.


2021 ◽  
pp. 096739112110456
Author(s):  
Tuğba Güngör Ertuğral ◽  
Cemil Alkan

One of the storage conditions affecting quality of food stuffs due to short shelf life is temperature. Thermal insulation can be achieved by adding phase change materials (PCMs) to packaging materials. PCMs store and release latent heat of phase change during melting and crystallization operations, respectively. Thus, they can provide thermal protection for packaged foods. The aim of this study is to prepare new food packaging materials poly (ethylene terephthalate)–poly (ethylene glycol) (PET–PEG) multiblock copolymers as solid–solid phase change materials (SSPCM) as potential food packaging materials with thermal energy storage (TES) property. Polyesterification was carried out with PEG at different average molecular weights (1000, 4000 and 10,000 g/mol), ethylene glycol (EG) and terephthaloyl chloride (TPC). Synthesized PET–PEG multiblock copolymers were characterized using Fourier transform infrared (FT-IR) spectroscopy and differential scanning calorimetry (DSC) methods. The crystal structures of PET–PEG multiblock copolymers were characterized by polarized optical microscopy (POM) and their surface properties were determined by performing contact angle tests. TES capacity of the PET–PEG multiblock copolymers was found in range of 26.1–150.5 J/g. Consequently, this study demonstrates the potential of PET–PEG multiblock copolymers suitable for effective thermal preservation in packaging material applications to maintain the quality of packaged food stuffs.


2018 ◽  
Vol 281 ◽  
pp. 131-136
Author(s):  
Shi Chao Zhang ◽  
Wei Wu ◽  
Yu Feng Chen ◽  
Liu Shi Tao ◽  
Kai Fang ◽  
...  

With the increase of the speed of vehicle, the thermal protection system of its powerplant requires higher insulation materials. Phase change materials can absorb large amounts of heat in short time. So the introduction of phase change materials in thermal insulation materials can achieve efficient insulation in a limited space for a short time. In this paper, a new phase change thermal insulation material was prepared by pressure molding with microporous calcium silicate as matrix and Li2CO3 as phase change material. The morphology stability, exudation and heat insulation of the materials were tested. The results show that the porous structure of microporous calcium silicate has a good encapsulation when the phase transition of Li2CO3 is changed into liquid. And the material has no leakage during use. The thermal performance test also shows that the insulation performance of the material has obvious advantages in the short term application.


2014 ◽  
Vol 602-603 ◽  
pp. 624-627 ◽  
Author(s):  
Shi Chao Zhang ◽  
Guang Hai Wang ◽  
Wei Wu ◽  
Yu Feng Chen ◽  
Hao Ran Sun

Tris (hydroxymethyl) ethane (PG) as a phase change material, micro-porous xonotlite (CS) as matrix, PG/CS composite PCMs were prepared by melt-soaking method, and the effect of micro-porous structure of xonotlite on heat absorption capacity, bending strength and insulation performance of composites, and the exudation of PG was studied. Otherwise, for the work environment and characteristics of propulsive device of vehicle, this paper explored the feasibility that phase change materials (PCMs) worked as the insulation material in short-time insulation system of the vehicle. Experimental results show that, when the most probable pore diameters of xonotlite was not less than 63nm, the composites presented better and almost same absorption capacities of matrix (CS) to PCM (PG) in different composites; when up to 85nm, the composite exhibited the lowest leakage rate (less than 5%), the optimal mechanical property and thermal insulation performance. This Study proposed a new idea for the design of the insulation material in the thermal protection system of propulsive device of vehicle.


2009 ◽  
Vol 132 (1) ◽  
Author(s):  
X. Duan ◽  
G. F. Naterer

Conventional ground surface insulation can be used to protect power line foundations in permafrost regions from the adverse effects of seasonal freezing and thawing cycles. But previous studies have shown ineffective thermal protection against the receding permafrost with conventional insulation. In this paper, an alternative thermal protection method (phase change materials (PCMs)) is analyzed and studied experimentally. Seasonal ground temperature variations are estimated by an analytical conduction model, with a sinusoidal ground surface temperature variation. A compensation function is introduced to predict temperature variations in the foundation, when the ground surface reaches a certain temperature profile. Measured data are acquired from an experimental test cell to simulate the tower foundation. With thermal energy storage in the PCM layer, the surface temperature of the soil was modified, leading to changes in temperature in the foundation. Measured temperature data show that the PCM thermal barrier effectively reduces the temperature variation amplitude in the foundation, thereby alleviating the seasonal freezing and thawing cycles. Different thermal effects of the PCM thermal barrier were obtained under different air temperature conditions. These are analyzed via melting degree hours and freezing degree hours, compared with a critical number of degree hours.


Sign in / Sign up

Export Citation Format

Share Document