Effects of Sudden Breakage of Hangers on Suspension Bridge

2013 ◽  
Vol 811 ◽  
pp. 234-239
Author(s):  
Wen Liang Qiu ◽  
Meng Jiang ◽  
Zhe Zhang

Hangers are the critical elements supporting stiffening girder in suspension bridge. The hangers probably break suddenly in service for the reasons of corrosion, fatigue or traffic accident. Because the hangers are anchored to the main cable, the sudden breakage of hanger causes strong vibration of main cable, and the vibration may damage some of the elements of the bridge. Using nonlinear dynamic analysis methods and adopting 3D finite element model, the responses of a suspension bridge to sudden breakage of hangers are studied in this paper. The results show that the sudden breakage of hanger has significant effects on tensions of the hangers adjacent to the broken hanger, the maximum tension of hanger produced by breakage of a hanger exceeds 2.2 times of its initial value, and the tensions of other hangers far away from the broken hanger are affected little. The breakage of a single hanger causes very large torsion moments of girder and reactions of bearings, but it has little effects on the tensions of main cable and moments of tower.

2014 ◽  
Vol 530-531 ◽  
pp. 284-288
Author(s):  
Jian Rong Yang ◽  
He Xian Su ◽  
Zheng Chong Lai

Modal experiment and 3D finite element analysis are performed on a newly-built self-anchored suspension bridge. The structural modal parameters are identified under ambient vibration excitation. Before that, a 3D finite element model of the bridge is generated using a commercially available finite element package. The measured data as well as the calculated are compared carefully. It illustrates that both of them are in reasonable concordance. The natural frequency of the actual structure is relatively higher than that of finite element model which means the actual bridge is much stiffer than its original design model.


2019 ◽  
Vol 22 (14) ◽  
pp. 3086-3099 ◽  
Author(s):  
Chuanxi Li ◽  
You Li ◽  
Jun He

In order to understand the torsional behavior of the spatial main cable between two saddles for a self-anchored suspension bridge during the transition process from construction state to completed state, a scaled model (1:15) was prepared and tested. First, the cable anchorage system and cable measurement device were designed. Then, a series of model tests under the conditions of different preloading angles and different tensioning forces for hangers were carried out. Finally, the regularity of the torsional properties was revealed on the basis of the measured twist angle of the main cable. The experimental study shows that the transverse pre-deflected angle of the cable clamp has a decisive influence on the torsional angle of the main cable sections near the cable clamp, but for the main cable sections far from the pre-deflected cable clamp, this influence can almost be negligible. The torsional angle changes linearly within adjacent cable clamps. When inclined angle of the hanger is larger than the pre-deflected angle of the cable clamp, the cable clamp will cause the main cable section to twist in the positive direction, otherwise, the result is reverse. With the increase in the hanger force, the direction of hanger force passes through the cross-sectional center of the main cable, resulting in an unchanged twisting angle. In addition, a three-dimensional finite element model of the test specimen was established and used to analyze the influence of pre-deflected angle of a cable clamp on the torsion angle of the main cable, the same results can be found in finite element analyses in comparison with the test results. Therefore, a reasonable pre-deflected angle of cable clamp can be determined by the finite element model in the primary design state before the construction stage.


2014 ◽  
Vol 530-531 ◽  
pp. 251-255
Author(s):  
Jian Rong Yang ◽  
Yu Bai ◽  
Xiao Dong Yang ◽  
Wei Ming Zhu

Three dimension finite element analysis and full-scale testing are carried out on a newly-built self-anchored suspension bridge. The 3D finite element model of the bridge is generated using a commercially available finite element package. The bridge is modeled under service loads, and the model results are compared to the results of field testing of the structure. Detailed experimental procedure is presented including the data acquisition system, testing truck, and the load distribution. Measured and calculated displacements are in reasonable concordance. And residual deformations meet the specification of the codes, no cracking opening.


2013 ◽  
Vol 838-841 ◽  
pp. 1096-1101 ◽  
Author(s):  
Feng Jiang Qin ◽  
Jin Di ◽  
Jie Dai ◽  
Guang Ling Li

A 3-D finite element model for Yueyang Dongting Lake bridge was established with a large scale general finite element analysis software, and the subspace iteration method was adopted to analyze the natural vibration characteristics of the bridge, meanwhile, the influences of settings different types of central buckles at the mid-span of the main spans between the main cables and girder on the dynamic behaviors of the long-span suspension bridge with deck-truss composite stiffening girder were studied. The results show that compared with only setting short hanger cable at mid-span, the the whole rigidity of suspension bridge is raised and the natural frequencies increase by the setting central buckle, but various types of vibration modes are affected in different extents; among all of these vibration modes, the antisymmetric vibration and Longitudinal floating of stiffening girder are most obviously affected. The stiffness of central buckle has a great influence on the vibration of main cable, while compared with only setting short hanger cable, the vibration of main cable increases 7.32% while setting the rigid central buckle. The conclusions of this paper provide theoretical basis for the using of central buckle in long-span suspension bridge.


Author(s):  
H. Ohmori ◽  
Y. Hangai ◽  
H. Tanaka

This paper deals with a nonlinear, dynamic analysis of Beck’s rod, trying to explain discrepancies between analysis and experiment and taking axial and lateral displacements of the rod into account. The numerical analysis was carried out for discrete mechanical models of the rod involving four and eight degrees-of-freedom as well as for a finite element model. Results obtained were thoroughly discussed and compared with known results stemming from previous linear treatments of Beck’s rod.


2019 ◽  
Vol 13 (2) ◽  
pp. 181-188
Author(s):  
Meng Liu ◽  
Guohe Li ◽  
Xueli Zhao ◽  
Xiaole Qi ◽  
Shanshan Zhao

Background: Finite element simulation has become an important method for the mechanism research of metal machining in recent years. Objective: To study the cutting mechanism of hardened 45 steel (45HRC), and improve the processing efficiency and quality. Methods: A 3D oblique finite element model of traditional turning of hardened 45 steel based on ABAQUS was established in this paper. The feasibility of the finite element model was verified by experiment, and the influence of cutting parameters on cutting force was predicted by single factor experiment and orthogonal experiment based on simulation. Finally, the empirical formula of cutting force was fitted by MATLAB. Besides, a lot of patents on 3D finite element simulation for metal machining were studied. Results: The results show that the 3D oblique finite element model can predict three direction cutting force, the 3D chip shape, and other variables of metal machining and the prediction errors of three direction cutting force are 5%, 9.02%, and 8.56%. The results of single factor experiment and orthogonal experiment are in good agreement with similar research, which shows that the model can meet the needs for engineering application. Besides, the empirical formula and the prediction results of cutting force are helpful for the parameters optimization and tool design. Conclusion: A 3D oblique finite element model of traditional turning of hardened 45 steel is established, based on ABAQUS, and the validation is carried out by comparing with experiment.


2021 ◽  
Vol 62 ◽  
pp. 302-312
Author(s):  
Ninggang Shen ◽  
Avik Samanta ◽  
Wayne W. Cai ◽  
Teresa Rinker ◽  
Blair Carlson ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1644
Author(s):  
Qian Zhang ◽  
Huijuan Liu ◽  
Tengfei Song ◽  
Zhenyang Zhang

A novel, improved equivalent circuit model of double-sided linear induction motors (DLIMs) is proposed, which takes the skin effect and the nonzero leakage reactance of the secondary, longitudinal, and transverse end effects into consideration. Firstly, the traditional equivalent circuit with longitudinal and transverse end effects are briefly reviewed. Additionally, the correction coefficients for longitudinal and transverse end effects derived by one-dimensional analysis models are given. Secondly, correction factors for skin effect, which reflects the inhomogeneous air gap magnetic field vertically, and the secondary leakage reactance are derived by the quasi-two-dimensional analysis model. Then, the proposed equivalent circuit is presented, and the excitation reactance and secondary resistance are modified by the correction coefficients derived from the three analytical models. Finally, a three-dimensional (3D) finite element model is used to verify the proposed equivalent circuit model under varying air gap width and frequency, and the results are also compared with that of the traditional equivalent circuit models. The calculated thrust characteristics by the proposed equivalent circuit and 3D finite element model are experimentally validated under a constant voltage–frequency drive.


Sign in / Sign up

Export Citation Format

Share Document