Chemical Bath Deposition of ZnS Buffer Layers

2013 ◽  
Vol 813 ◽  
pp. 435-439
Author(s):  
Tai Quan

Chemical bath deposited ZnS thin films are promising buffer layers for thin film solar cells, replacing the environmentally hostile CdS buffer layers currently in use. Reflection, absorption and scattering are the three main light loss mechanisms in buffer layers. In this work, improved process conditions, such as magnetic stirring and air annealing, are used in the chemical bath deposition of ZnS thin films to optimize their surface morphology, which effectively reduces light scattering and increases the transmittance, resulting much better ZnS thin films.

2008 ◽  
Vol 51 ◽  
pp. 125-130 ◽  
Author(s):  
Rong Fuh Louh ◽  
Warren Wu

Chemical bath deposition (CBD) is a fairly simple synthetic route to prepare II-VI semicondutive zinc sulfide thin films, which can be prepared on the flat surface of glass or silicon wafer substrates in the solution containing the precursors of zinc and sulfur ions in terms of ambient conditions of varying acidity. This study particularly aims at the growth dependence and optical property of ZnS thin films in the CBD process by different experiment parameters, whereas we intend to choose suitable types of zinc ionic precursors to be coupled with various CBD parameters such as reaction temperature and time, precursor concentration, types and complexing agents as well as post-deposition heat treatment conditions. Addition of different concentration of ethylenediamine, ammonium sulfate, sodium citrate and hydrazine in the CBD reaction process was used to control the adequate growth rate of ZnS thin films. As a consequence, the rapid thermal annealing was employed to enhance the film uniformity and thickness evenness, transmittance and the energy gap of ZnS samples. The results would lead to a potential application of buffer layer for the Cu (In,Ga)Se2 based thin film solar cells. The analytic instrument including SEM, AFM, UV-VIS were used to examine the CBD-derived nanosized ZnS buffer layers for the thin film solar cells. The ZnS thin films prepared by the chemical bath deposition in this study results in film thickness of 80 ~ 100 nm, high transmittance of 80~85% and the energy gap of 3.89 ~ 3.98 eV.


2020 ◽  
Vol 20 (11) ◽  
pp. 6659-6664
Author(s):  
Jeong Eun Park ◽  
So Mang Park ◽  
Eun Ji Bae ◽  
Donggun Lim

Zinc Sulfide (ZnS) is an environmentally friendly material with a wide bandgap (Eg = 3.7 eV) comparable to that of cadmium sulfide (CdS) (2.4 eV), which is conventionally used as buffer layer in Cu(In,Ga)Se2 (CIGS) thin film solar cells. Conventional ZnS buffer layers are manufactured using thiourea, and, these layers possess a disadvantage in that their deposition rate is lower than that of CdS buffer layers. In this paper, thioacetamide (TAA) was used as a sulfur precursor instead of thiourea to increase the deposition rate. However, the ZnS thin films deposited with TAA exhibited a higher roughness than the ZnS thin films deposited with thiourea. Sodium citrate was therefore added to increase the uniformity and decrease the roughness of the former ZnS thin films. When sodium citrate was used, the thin films demonstrated a high transmittance via the controlled generation of particles. In the case of TAA–ZnS thin films doped with a sodium citrate concentration of 0.04 M, the granules on the surface disappeared and these thin films were denser than the TAA–ZnS thin films deposited with a lower sodium citrate concentration. It is considered that the rate of the ion-by-ion reaction increased due to the addition of sodium citrate, thereby resulting in a uniform thin film. Consequently, TAA–ZnS thin films with thicknesses of approximately 40 nm and high transmittances of 83% were obtained when a sodium citrate concentration of 0.04 M was used.


2010 ◽  
Vol 20 (10) ◽  
pp. 501-507 ◽  
Author(s):  
Sang-Hun Beak ◽  
Jeong-Chul Lee ◽  
Sang-Hyun Park ◽  
Jin-Soo Song ◽  
Kyung-Hoon Yoon ◽  
...  

2001 ◽  
Vol 668 ◽  
Author(s):  
A.M. Chaparro ◽  
M.T. Gutiérrez ◽  
J. Herrero ◽  
J. Klaer

ABSTRACTThin film solar cells of CuInS2/Zn(Se,O)/ZnO configuration have been studied as a function of the Zn(Se,O) buffer layer deposition parameters. Deposition of the buffer films was carried out by the chemical bath deposition (CBD) method, at different bath temperatures and compositions, and followed in situ with a quartz crystal microbalance. The CBD conditions were chosen to grow Zn(Se,O) buffer layers under different kinetic regimes but maintaining the same buffer thickness. The cells have been characterised with current-voltage and quantum efficiency measurements. Light soaking effects and medium term stability have been checked. It is found that Zn(Se,O) grown under predominant electroless kinetics gives rise to buffer films richer in oxygen, which allow for higher fill factors, higher efficiencies (around 10%) and stability of the cells. These cells show however lower open circuit potential. On the other hand, Zn(Se,O) buffers grown under chemical regime become richer in selenium, which gives rise to cells with higher open circuit potential, but lower fill factor, conversion efficiency and stability. Light soaking effects are also more important with the chemically grown buffers.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 897
Author(s):  
William Vallejo ◽  
Carlos Diaz-Uribe ◽  
Cesar Quiñones

Chemical bath deposition (CBD) is a suitable, inexpensive, and versatile synthesis technique to fabricate different semiconductors under soft conditions. In this study, we deposited Zn(O;OH)S thin films by the CBD method to analyze the effect of the number of thin film layers on structural and optical properties of buffer layers. Thin films were characterized by X-ray diffraction (XRD) and UV-Vis transmittance measurements. Furthermore, we simulated a species distribution diagram for Zn(O;OH)S film generation during the deposition process. The optical results showed that the number of layers determined the optical transmittance of buffer layers, and that the transmittance reduced from 90% (with one layer) to 50% (with four layers) at the visible range of the electromagnetic spectrum. The structural characterization indicated that the coatings were polycrystalline (α-ZnS and β-Zn(OH)2 to four layers). Our results suggest that Zn(O;OH)S thin films could be used as buffer layers to replace CdS thin films as an optical window in thin-film solar cells.


2006 ◽  
Vol 90 (18-19) ◽  
pp. 3130-3135 ◽  
Author(s):  
Akira Ichiboshi ◽  
Masashi Hongo ◽  
Takuya Akamine ◽  
Tsukasa Dobashi ◽  
Tokio Nakada

Sign in / Sign up

Export Citation Format

Share Document