Evaluation of Progressive Collapse of Special Steel Moment Frames

2013 ◽  
Vol 831 ◽  
pp. 85-89
Author(s):  
A. Valadbeigi ◽  
M. Ghassemieh

The point of this study was to assess the progressive collapse resisting capacity of special steel moment frame structures and the behaviour of buildings which have different height when they are losing one of their exterior columns. Two buildings were considered for this research, 7-storiy and 12-storiy buildings. Corner column as well as one of the middle columns was removed to evaluate the importance and the effect of the location of removed column in structural response. General Services Administration (GSA) and Department of Defence (DoD) guidelines are considered for choosing the method of analysis. Nonlinear dynamic analysis procedures were carried out to investigate the behavior of structures. Thus, maximum vertical displacement in the point of column removal for each structure was measured. In addition, both buildings have cover plate connections which are cosidered to be rigid in modelling.

2003 ◽  
Vol 19 (2) ◽  
pp. 269-290
Author(s):  
C. Mark Saunders

The damage to steel moment frames observed in the Northridge earthquake of 1994 led to requirements in codes for use of tested connections, when these systems were to be employed in new buildings. One of the primary goals of the FEMA/SAC project was to develop guidelines for the design of steel moment frames that would return the design process to a relatively simple set of procedures similar to those used in the design of other lateral force-resisting systems. Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings, FEMA-350, presents design guidelines for use of steel moment frames in new buildings, developed from the FEMA/SAC research. This paper provides a general summary of the criteria, and a description of the prequalified connections and recommendations for their use.


2019 ◽  
Vol 11 (2) ◽  
pp. 264-276
Author(s):  
Arash Naji

Purpose Progressive collapse refers to a phenomenon, in which local damage in a primary structural component leads to total or partial structural system failure, without any proportionality between the initial and final damage. Robustness is a measure that demonstrates the strength of a structure to resist progressive collapse. Static pushdown and nonlinear dynamic analysis were two main procedures to calculate the capacity of structures to resist progressive collapse. According to previous works, static analysis would lead to inaccurate results. Meanwhile, capacity analysis by dynamic analysis needs several reruns and encountering numerical instability is inevitable. The purpose of this paper is to present the formulation of a solution procedure to determine robustness of steel moment resisting frames, using plastic limit analysis (PLA). Design/methodology/approach This formulation utilizes simplex optimization to solve the problem. Static pushdown and incremental dynamic methods are used for verification. Findings The results obtained from PLA have good agreement with incremental analysis results. While incremental dynamic analysis is a very demanding method, PLA can be utilized as an alternative method. Originality/value The formulation of progressive collapse resistance of steel moment frames by means of PLA is not proposed in previous research works.


2012 ◽  
Vol 28 (3) ◽  
pp. 1189-1204 ◽  
Author(s):  
Shiv Shanker Ravichandran ◽  
Richard E. Klingner

In this two-part work, seismic behavior and design of steel moment frames with masonry infills are investigated systematically. In this first part, the “infill strength ratio” (the ratio of the story shear strength of infills to the story shear strength of the bare frame) is shown to have a fundamental effect on the seismic behavior of an infilled frame. This fundamental effect is demonstrated using pushover analysis of an example steel moment frame with masonry infills in uniformly infilled and open ground story configurations. In general, infill strength ratios greater than about 0.35 are associated with progressive deterioration of seismic performance, leading to story mechanisms concentrated in the lower stories. Greater infill strength ratios can also lead to local shear failures in frame members.


2020 ◽  
Vol 20 (06) ◽  
pp. 2040005
Author(s):  
Han Peng ◽  
Jinping Ou ◽  
Andreas Schellenberg ◽  
Frank Mckenna ◽  
Stephen Mahin

This paper presents an investigation on the seismic behavior of steel moment frames with mechanical hinge beam-to-column connections. The connection uses a mechanical hinge to carry shear force and a pair of buckling-restrained steel plates bolted to the beam flange to transfer bending moment. The moment-rotation behavior of the connection was theoretically studied. A nonlinear numerical model for steel moment frames under strong earthquakes was developed and validated using a shaking table test of an 18-story steel moment frame at the E-Defense facility. Then, nonlinear static and time-history analyses were conducted to compare the seismic behavior of a conventional steel moment frame and three innovative steel frames equipped mechanical hinge connections in terms of roof displacement, base shear, inter-story drift ratio, and plastic hinge rotation.


Structures ◽  
2022 ◽  
Vol 36 ◽  
pp. 927-934
Author(s):  
Yan Fei Zhu ◽  
Yao Yao ◽  
Ying Huang ◽  
Chang Hong Chen ◽  
Hui Yun Zhang ◽  
...  

2014 ◽  
Vol 7 (10) ◽  
pp. 2135-2144
Author(s):  
Azlan Bin Adnan ◽  
Iman Faridmehr ◽  
Babak Faramanbordar ◽  
Reza Hodjati ◽  
Mohammad Gharehzadeh Shirazi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document