Self-Repairing Control System for a Hybrid Underwater Vehicle

2013 ◽  
Vol 834-836 ◽  
pp. 1256-1262 ◽  
Author(s):  
Biao Wang ◽  
Chao Wu ◽  
Tong Ge

A novel remotely operated underwater vehicle-a hybrid remotely operated underwater vehicle (HROV) capable of working to the full ocean depth has been developed. The battery powered vehicle operates in two modes. For broad-area survey, the vehicle can operate as an autonomous underwater vehicle (AUV) capable of mapping the sea floor with sonars and cameras. For close up imaging and sampling, the vehicle can operate as a remotely operated underwater vehicle (ROV) employing a optic fiber tether for real-time telemetry of data and video to its operators on a surface ship. In order for the vehicle to achieve a certain survivability and reliability level, a self-repairing control system (SRCS) has been designed. This paper presents the two basic technologies in SRCS: fault diagnosis and isolation (FDI) and reconfigurable control. For FDI, a model-based hierarchical fault diagnosis system is designed for the HROV. Then, control strategies which reconfigure the control system at intervals according to information from the FDI system are presented. Combining the two technologies, we obtained the fundamental frame of SRCS for the HROV.

2015 ◽  
Vol 105 ◽  
pp. 247-255 ◽  
Author(s):  
Ming-jun Zhang ◽  
Yu-jia Wang ◽  
Jian-an Xu ◽  
Zheng-chen Liu

2021 ◽  
Vol 29 (1) ◽  
pp. 97-110
Author(s):  
V.S. Bykova ◽  
◽  
A.I. Mashoshin ◽  
I.V. Pashkevich ◽  
◽  
...  

Two safe navigation algorithms for autonomous underwater vehicles are described: algorithm for avoidance of point obstacles including all the moving underwater and surface objects, and limited size bottom objects, and algorithm for bypassing extended obstacles such as bottom elevations, rough lower ice edge, garbage patches. These algorithms are developed for a control system of a heavyweight autonomous underwater vehicle.


Author(s):  
Md Salim Kamil ◽  
Noorazlina Mohamid Salih ◽  
Atzroulnizam Abu ◽  
Muhammad Muzhafar Abdullah ◽  
Norshakila Abd Rasid ◽  
...  

2020 ◽  
Vol 10 (6) ◽  
pp. 2048 ◽  
Author(s):  
Yang Jiang ◽  
Bo He ◽  
Jia Guo ◽  
Pengfei Lv ◽  
Xiaokai Mu ◽  
...  

The autonomous underwater vehicle (AUV) is mainly used in the development and exploration of the ocean. As an important module of the AUV, the actuator plays an important role in the normal execution of the AUV. Therefore, the fault diagnosis of the actuator is particularly important. At present, the research on the strong faults, such as the winding of the actuator, has achieved good results, but the research on the weak fault diagnosis is relatively rare. In this paper, the tri-stable stochastic resonance model is analyzed, and the ant colony tri-stable stochastic resonance model is used to diagnose the weak fault. The system accurately diagnoses the fault of the actuator collision and verifies the adaptive tri-stable stochastic resonance system. This model has better diagnostic results than the bi-stable stochastic resonance system.


2019 ◽  
Vol 9 (22) ◽  
pp. 4958 ◽  
Author(s):  
Lichuan Zhang ◽  
Lu Liu ◽  
Shuo Zhang ◽  
Sheng Cao

The application of Autonomous Underwater Vehicle (AUV) is expanding rapidly, which drives the urgent need of its autonomy improvement. Motion control system is one of the keys to improve the control and decision-making ability of AUVs. In this paper, a saturation based nonlinear fractional-order PD (FOPD) controller is proposed for AUV motion control. The proposed controller is can achieve better dynamic performance as well as robustness compared with traditional PID type controller. It also has the advantages of simple structure, easy adjustment and easy implementation. The stability of the AUV motion control system with the proposed controller is analyzed through Lyapunov method. Moreover, the controlled performance can also be adjusted to satisfy different control requirements. The outperformed dynamic control performance of AUV yaw and depth systems with the proposed controller is shown by the set-point regulation and trajectory tracking simulation examples.


Author(s):  
Abdollah Arabshahi ◽  
Howard J. Gibeling

The present study was undertaken to provide information for both design improvement and control system development during various stages of an autonomous underwater vehicle (AUV) development project. The need to establish a predictive capability for the hydrodynamic (control) coefficients for an AUV presented an opportunity to apply a multiblock incompressible Navier-Stokes flow solver which has evolved over many years. The solver utilizes a state-of-the-art implicit, upwind numerical scheme to solve the time-dependent Navier-Stokes equations in a generalized time-dependent curvilinear coordinate system. Domain decomposition is accomplished via a general unstructured multiblock approach. In addition, an efficient grid movement capability is incorporated in the code that will handle the relative motion of a multi-component configuration (e.g. oscillating control surfaces). Numerous simulations were conducted during the course of this work. The computations for vehicle and propulsor design consisted mainly of steady state axisymmetric computations, while for control system development both steady and unsteady (prescribed motion) simulations were conducted. The latter cases focus on the forces and moments on the vehicle that are needed for extraction of control information. A brief overview will be presented on the flow solver. This will be followed by a presentation of the numerical results.


Sign in / Sign up

Export Citation Format

Share Document