Deproteinized Natural Rubber as Chewing Gum Base for Nicotine Delivery

2013 ◽  
Vol 844 ◽  
pp. 470-473
Author(s):  
Wiwat Pichayakorn ◽  
Prapaporn Boonme ◽  
Wirach Taweepreda

This study aimed to prepare the nicotine chewing gums for smoking cessation using deproteinized natural rubber latex (DNRL) as gum bases due to its highly flexible property. The formulations were produced by the conventional heat melting and kneading methods. The experimental design was used to obtain the optimum 3 gum base formulations. Each formulation composed of olive oil as a plasticizer; sodium carboxymethylcellulose as an adsorbent; xylitol, mannitol and saccharin sodium as sweeteners instead of sugar. Gum base 1 and gum base 2 had the same sweetener amount but gum base 2 had the lower plasticizer amount, while gum base 1 and gum base 3 had the same plasticizer amount but different sweetener amount. Nicotine was added into each 3 gum bases (NCT1-3). The results showed no significant difference of appearance and taste. Their physicochemical properties were as following: pH of 8.45, 8.46, 8.54, hardness of 39.80, 36.28, 33.14 Shore A, initial modulus of 0.090, 1.260, 0.065 MPa, %elongation of 286, 403, 489%, drug content of 63.62, 70.95, 72.70%, and drug release when 500 times for force clamping of 48.72, 45.72, 67.74%, respectively. After storage at room temperature for 1 month, NCT1 and NCT2 showed unchangeable appearance, but NCT3 showed the slightly liquefied film and much sticky due to hygroscopic property of its sweetener. However, all formulations showed the significant reduction of drug amount which should be further improved in their stability properties.

2013 ◽  
Vol 747 ◽  
pp. 95-98 ◽  
Author(s):  
Wiwat Pichayakorn ◽  
Prapaporn Boonme ◽  
Wirach Taweepreda

The aim of this research was to develop the peel-off mask in paste form which can be applied to the face and then formed removable thin film. Deproteinized natural rubber latex (DNRL) from Hevea brasiliensis was used as the major film former. After deproteinization by alcalase enzyme treatment, the protein amount was 0.257% that reduced from the initial amount of 1.531%. The appropriate types and amounts of additives were studied by optimization design. The product compatibility and stability were evaluated. The addition of active ingredients for skin nourishing was also investigated. The suitable formulation composed of DNRL, polyvinyl alcohol (PVA) and methylcellulose (MC) as film formers, propylene glycol (PG) and glycerin as plasticizer, Tween 80 as stabilizer, Paraben concentrate as preservative, and other active ingredients including tocopheral acetate, aloe vera, jojoba oil, and tamarind extract. The product was white viscous paste with the pH of 5.69, viscosity of 28,100 cps as pseudoplastic flow behavior, and stable when kept in well-close container at room temperature for more than 1 month. The product in situ film was good elasticity indicated by initial modulus (0.96 MPa), tensile strength (0.208 MPa) and elongation at break (105.6%). Skin irritation in rabbit skin was very slightly which showed the small rash skin but could recover soon. The complacency test in 50 healthy volunteers showed the good results with no irritation effect. In conclusions, DNRL could be prepared peel-off mask product with good properties.


2018 ◽  
Vol 42 (17) ◽  
pp. 14179-14187
Author(s):  
Janisha Jayadevan ◽  
G. Unnikrishnan

Novel blend membranes from physico-chemically modified deproteinized natural rubber latex for drug release applications.


2013 ◽  
Vol 858 ◽  
pp. 184-189
Author(s):  
Siti Rohana Yahya ◽  
Farah Nadiah Hamdan ◽  
Azura A. Rashid ◽  
Baharin Azahari

The main objective of this study was to investigate the effect of the pre-vulcanization temperature on mechanical and rheological properties of starch filled natural rubber (NR) latex films. The 10 phr filler loading of starch was added into the latex prior to the pre-vulcanization process at 60°C to 140°C. The dipped films were cured in the oven at 100°C for 20 minutes and cooled at room temperature for 24 hours before stripping. The rheological properties of NR latex compounds were studied based on the viscosity measurement. The tensile and tear tests of starch filled NR latex films were also carried out. The results indicated that the rheological properties of the latex compounds showed shear thickening behavior where viscosity was increased with the increase in shear rate and pre-vulcanization temperature proportionally. The pre-vulcanization temperature at 80°C showed the optimum mechanical properties of starch filled NR latex films.


2004 ◽  
Vol 94 (3) ◽  
pp. 1164-1174 ◽  
Author(s):  
K. K. Sasidharan ◽  
Shiny Palaty ◽  
K. S. Gopalakrishnan ◽  
K. E. George ◽  
Rani Joseph

Author(s):  
Roslim Ramli ◽  
Ai Bao Chai ◽  
Shamsul Kamaruddin ◽  
Jee Hou Ho ◽  
Fatimah Rubaizah Mohd. Rasdi ◽  
...  

2011 ◽  
Vol 378-379 ◽  
pp. 580-584
Author(s):  
N. Anuwongnukroh ◽  
Porntiwa Senarak ◽  
Surachai Dechkunakorn ◽  
Theeralaksna Suddhasthira ◽  
C. Kongkaew ◽  
...  

Introduction: The most widely used preservative system for natural rubber latex to date is the ammonia-based system preventing spontaneous coagulation and putrefaction due mainly to bacteria contamination. Objectives: The study compared 2 types of Thai orthodontic elastics, produced from natural rubber latex with different ammonia contents with commercial orthodontic elastics in terms of initial extension force, residual force, force loss, swelling index, breaking strength and maximum displacement. Materials and Methods: Thai orthodontic elastics were developed from 2 types of natural rubber latex; low ammonia < 0.15% (Thai-L), and high ammonia not < 0.6% (Thai-H). The mechanical properties of Thai orthodontic elastics were compared with commercial elastics (Ormco). Mechanical properties were tested using a universal testing machine (Instron 5566). Data were analyzed by One-way ANOVA and Tukey’s test compared the measurements among groups. Results: Ormco had the highest initial extension force and showed significant differences with Thai-L and Thai-H. Thai-L had the highest residual force but showed no significant difference compared with Ormco. Thai-L had the lowest percent of force loss and showed significant differences with Thai-H and Ormco. Thai-L had lower force loss than Thai-H. For swelling index, Thai-L had the highest elasticity. For breaking strength and maximum displacement, both Thai elastics met the Australian Standard (AS) for breaking strength and maximum displacement, similar to Ormco elastics. Conclusion: All elastics met the specifications of the AS for breaking strength and maximum displacement. Thai-L had comparable properties with commercial orthodontic elastics in terms of mechanical properties. Thai-L had comparable properties with Ormco in terms of mechanical properties and may be developed for orthodontic purposes.


Sign in / Sign up

Export Citation Format

Share Document