Using of AOP Process for Phenol Removal from Wastewater

2013 ◽  
Vol 864-867 ◽  
pp. 1690-1693 ◽  
Author(s):  
Blanka Galbičková ◽  
Lenka Blinová ◽  
Maroš Soldán

Advanced oxidation processes (AOPs) have been developed as an emerging technology for hazardous organic treatment in industrial wastewater. For phenol removing from wastewater traditional disinfection by chlorine is not appropriate because of generating more toxic pollutants - chlorophenols so AOPs are widely used for disinfection of this kind of water. In this paper for phenol degradation is used physico-chemical method (ozonization). Also influence of catalyst is monitored. As catalyst red mud and black nickel mud are used. These catalysts are waste from metal production. Results from analyses are compared.

Author(s):  
Blanka Galbičková ◽  
Maroš Soldán ◽  
Michal Belčík ◽  
Karol Balog

Abstract Utilization of AOPs (Advanced oxidation processes) as an emerging technology for removing of pollutants from wastewater is developed. In this paper, UV photodegradation was used for removing of phenol from wastewater. As a source of UV radiation medium pressure mercury lamp with output 400W was used. The influence of low-cost catalysts on this process was also monitored. Wastes from metal production, red mud and black nickel mud, were used as catalysts.


2002 ◽  
Vol 36 (4) ◽  
pp. 1034-1042 ◽  
Author(s):  
Santiago Esplugas ◽  
Jaime Giménez ◽  
Sandra Contreras ◽  
Esther Pascual ◽  
Miguel Rodrı́guez

Environments ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 116
Author(s):  
Yi-Ping Lin ◽  
Ramdhane Dhib ◽  
Mehrab Mehrvar

Polyvinyl alcohol (PVA) is an emerging pollutant commonly found in industrial wastewater, owing to its extensive usage as an additive in the manufacturing industry. PVA’s popularity has made wastewater treatment technologies for PVA degradation a popular research topic in industrial wastewater treatment. Although many PVA degradation technologies are studied in bench-scale processes, recent advancements in process optimization and control of wastewater treatment technologies such as advanced oxidation processes (AOPs) show the feasibility of these processes by monitoring and controlling processes to meet desired regulatory standards. These wastewater treatment technologies exhibit complex reaction mechanisms leading to nonlinear and nonstationary behavior related to variability in operational conditions. Thus, black-box dynamic modeling is a promising tool for designing control schemes since dynamic modeling is more complicated in terms of first principles and reaction mechanisms. This study seeks to provide a survey of process control methods via a comprehensive review focusing on PVA degradation methods, including biological and advanced oxidation processes, along with their reaction mechanisms, control-oriented dynamic modeling (i.e., state-space, transfer function, and artificial neural network modeling), and control strategies (i.e., proportional-integral-derivative control and predictive control) associated with wastewater treatment technologies utilized for PVA degradation.


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3010
Author(s):  
Eva Domingues ◽  
Maria João Silva ◽  
Telma Vaz ◽  
João Gomes ◽  
Rui C. Martins

Wastewaters from the olive oil industry are a regional environmental problem. Their phenolic content provides inherent toxicity, which reduces the treatment potential of conventional biological systems. In this study, Sulfate Radical based Advanced Oxidation Processes (SRbAOPs) are compared with advanced oxidation processes (namely Fenton’s peroxidation) as a depuration alternative. Synthetic olive mill wastewaters were submitted to homogeneous and heterogeneous SRbAOPs using iron sulfate and solid catalysts (red mud and Fe-Ce-O) as the source of iron (II). The homogenous process was optimized by testing different pH values, as well as iron and persulfate loads. At the best conditions (pH 5, 300 mg/L of iron and 600 mg/L of persulfate), it was possible to achieve 39%, 63% and 37% COD, phenolic compounds and TOC removal, respectively. The catalytic potential of a waste (red mud) and a laboratory material (Fe-Ce-O) was tested using heterogenous SRbAOPs. The best performance was achieved by Fe-Ce-O, with an optimal load of 1600 mg/L. At these conditions, 27%, 55% and 5% COD, phenolic compounds and TOC removal were obtained, respectively. Toxicity tests on A. fischeri and L. sativum showed no improvements in toxicity from the treated solutions when compared with the original one. Thus, SRbAOPs use a suitable technology for synthetic OMW.


2019 ◽  
Vol 125 ◽  
pp. 03003
Author(s):  
Elin Marlina ◽  
Purwanto

Electro-Fenton is part of electrochemical advanced oxidation processes (EAOPs) which have been widely used to treat various types of waste such as color, drugs, phenol compounds, leachate, surfactants, and others. This article focuses on the effects of various operating parameters and recent developments in the electro-Fenton process, and then their optimum ranges for maximum pollutant removal and various pollutants removed by this process is observed.


Sign in / Sign up

Export Citation Format

Share Document