mercury lamp
Recently Published Documents


TOTAL DOCUMENTS

284
(FIVE YEARS 26)

H-INDEX

20
(FIVE YEARS 3)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 662
Author(s):  
Agnieszka Skotnicka ◽  
Janina Kabatc

A series of 2-phenacylbenzoxazole difluoroboranes named BODIPY dyes (1–8) was designed and applied as photosensitizers (PS) for radical photopolymerization of acrylate monomer. The light absorption within the ultraviolet-visible (UV–Vis) range (λmax = 350–410 nm; εmax = 23,000–42,500 M−1cm−1), that is strongly influenced by the substituents on the C3 and C4 atoms of phenyl ring, matched the emission of the Omnicure S2000 light within 320–500 nm. The photosensitizer possess fluorescence quantum yield from about 0.005 to 0.99. The 2-phenacylbenzoxazole difluoroboranes, together with borate salt (Bor), iodonium salt (Iod) or pyridinium salt (Pyr) acting as co-initiators, can generate active radicals upon the irradiation with a High Pressure Mercury Lamp which initiates a high-performance UV–Vis light-induced radical polymerization at 320–500 nm. The polymers obtained are characterized by strong photoluminescence. It was found that the type of radical generator (co-initiator) has a significant effect on the kinetic of radical polymerization of acrylate monomer. Moreover, the chemical structure of the BODIPY dyes does not influence the photoinitiating ability of the photoinitiator. The concentration of the photoinitiating system affects the photoinitiating performance. These 2-phenacylbenzoxazole difluoroborane-based photoinitiating systems have promising applications in UV–Vis-light induced polymerization.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 125
Author(s):  
Mikhail A. Kotov ◽  
Andrey N. Shemyakin ◽  
Nikolay G. Solovyov ◽  
Mikhail Y. Yakimov

The study focused on increasing the efficiency of germicidal UV radiation by using highly diffuse reflective materials such as PTFE in irradiated cavities of UV air purifiers. In a conventional cylindrically symmetric cavity with a linear amalgam mercury lamp as UV-radiation source on the axis UV-radiation, flux directed from the lamp to the walls dropped from the axis to the periphery. To increase the UV irradiation, the walls are often made mirror-reflective, but the radiation flux distribution remained radially symmetric with a maximum on the source emitting surface in this case as well. When most of the emitted light is returned to the source after one reflection, the conditions of its operation are disturbed. If the walls are made of highly diffuse reflective materials, the radiation flux density inside the cavity increases on average, and its distribution becomes uniform and highly symmetric. Thus, the effect of amplification of the radiation flux due to the highly diffuse reflectivity of the walls increases with radius and reaches a maximum at the wall. Experiments were performed to demonstrate increasing amplification of germicidal UV radiation flux with a diffuse reflection coefficient in cylindrical cavities with walls of PTFE and ePTFE. The irradiation of the cavity wall was observed to increase up to 20 times at the resonant mercury line of 253.7 nm and up to 40 times at some non-resonant lines of the visible range due to highly diffuse reflectivity of the cavity walls. The flux amplification effect was limited by the diffuse reflectivity value of the walls and absorption coefficient of the radiation emitting surface. A formula for calculating the radiation flux amplification factor in a diffusely reflecting cylindrically symmetric cavity was derived for the case of Lambertian source and reflector, including wall reflectivity and source surface absorption coefficients. The effects of heating and cooling of the mercury lamp amalgam directly affected the amplification, and symmetrization of germicidal irradiation was observed and is discussed in the paper. Numerical calculations were performed by the ray tracing method. The calculated model was verified by comparing the numerical results with those of both the approximate theoretical consideration and experiments. The promising use of diffusely reflecting cylindrical cavities for UV air purifiers is discussed. Designs of air inlet and outlet ports that allow effective locking of germicidal radiation inside the UV air purifiers were considered. The results of this work may be of interest for further developments in the UV disinfection technique.


Author(s):  
Soraya Boukhedoua ◽  
Razika Zouaghi ◽  
Oualida Nour El Houda Kaabeche

Abstract In the present work, a comparative study of the photooxidation of an aqueous solution of Methyl Orange (MeO) has been realized using H2O2 and IO3 −, BrO3 −, ClO3 −, ClO4 −, BO3 − ions in the presence of UV low pressure mercury lamp (UV-C light at λ max = 254 nm). The initial concentration of MeO in all experiments was 6 × 10−5 mol L−1. The degradation rate of MeO follows pseudo-first-order kinetics in all UV/Oxidant systems. The highest degradation rate of MeO was in the BrO3 −/UV254nm system. Different systems were compared for an oxidant concentration of 10−2 mol L−1 and the obtained results showed that decolorization followed the decreasing order: BrO 3 − /UV 254 nm  > IO 3 − /UV 254 nm  > H 2 O 2 /UV 254 nm  > BO 3 − /UV 254 nm  > ClO 3 − /UV 254 nm  = ClO 4 − /UV 254 nm  = UV 254 nm . The optimization of oxidants concentration for each process was determined (10−2 mol L−1 for IO3 − which gives almost the same k app for 5 × 10−3, 10−2 mol L−1 for BO3 − and 5 × 10−2 mol L−1 for H2O2). No degradation of MeO in presence of ClO3 − and ClO4 − because these ions do not absorb at 254 nm, therefore they do not generate radical species which degrade organic pollutants. The mineralization was also studied where it was reached 97% after 5 h of irradiation for both H2O2/UV254 nm and BO3 −/UV254 nm systems.


2021 ◽  
Vol 57 (1) ◽  
pp. 015013
Author(s):  
V V Mayer ◽  
E I Varaksina

Abstract We propose a laboratory experiment on the quantitative study of the normal dispersion of light. A triangular isosceles prism made of flint glass TF3 is used as the object of study, and we describe a simple and affordable device for observing and photographing the dispersion spectrum on a smartphone. A possibility of the quantitative investigation of light dispersion is provided by using a modern miniature mercury lamp emitting a line spectrum of mercury vapour against the background of a solid spectrum of white light. The method of processing experimental results is stated.


2021 ◽  
Vol 11 (22) ◽  
pp. 10661
Author(s):  
Jian-Jong Liang ◽  
Chun-Che Liao ◽  
Chih-Shin Chang ◽  
Chih-Yin Lee ◽  
Si-Yu Chen ◽  
...  

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emerged as a serious threat to human health worldwide. The inactivation of SARS-CoV-2 on object surfaces and in the indoor air might help to halt the COVID-19 pandemic. Far-ultraviolet light (UVC) disinfection has been proven to be highly effective against viruses and bacteria. To understand the wavelength and duration of UVC radiation required for SARS-CoV-2 inactivation, we examined the efficacy of UVC light prototype devices with the wavelengths of 275, 254, and 222 nm. The disinfection effectiveness was determined by cell-based assays including the median tissue culture infectious dose (TCID50) and an immunofluorescent assay on African green monkey kidney epithelial Vero E6 cells. Among the three prototypes, the UVC LED (275 nm) had the best virucidal activity with a log-reduction value (LRV) >6 after 10 s of exposure. The mercury lamp (254 nm) reached similar virucidal activity after 20 s of exposure. However, the excimer lamp (222 nm) showed limited anti-SARS-CoV-2 activity with a LRV < 2 after 40 s of exposure. Overall, in comparison, the UVC LED (275 nm) exhibited superior SARS-CoV-2 disinfection activity than the mercury lamp (254 nm) and the excimer lamp (222 nm).


Wood Research ◽  
2021 ◽  
Vol 66 (4) ◽  
pp. 544-555
Author(s):  
DENES VARGA ◽  
LASZLO TOLVAJ ◽  
EDINA PREKLET

Black locust (Robinia pseudoacacia L.), beech red heartwood (Fagus sylvaticaL.) and spruce (Picea abiesKarst.) wood samples were treatedin saturated steam at 100, 110 and 120°C then irradiated using a UV emitter mercury lamp in order to test their colour stability. Colour change was evaluated and presented in the CIE Lab colour coordinate system. Untreated black locust, beech and spruce specimens as control samples were irradiated using the same mercury lamp. Results revealed that beech produced the greatest colour stability during both steam treatment and the following UV treatment while spruce was the most sensitive species to photodegradation. Steaming reduced the colour change intensity only for black locust during photodegradation. Both redness and yellowness change demonstrate this colour stability increase. Steaming at 120°C resulted in the greatest protection against the colour alteration of black locust caused by photodegradation.The investigated thermal treatments did not change the photodegradation properties of beech and spruce specimens. A considerable increase in colour saturation of the specimens was generated by steaming, and the saturation value further increased during the UV treatment.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Haixia Yu ◽  
Shengliang He ◽  
Wenfu Zhang ◽  
Mengyao Zhan ◽  
Xiaowei Zhuang ◽  
...  

Light is one of the most adverse factors for bamboo deterioration and causes surface degradation and discoloration. The study was carried out to initiate efficient and effective photodiscoloration to modify and enrich bamboo colors that may be applied to bamboo dyeing. Different types of bamboo samples commonly used in the industry were studied experimentally under two types of ultraviolet (UV) light. Effects of light sources, radiation time, and distances on discoloration and discoloration mechanism were systematically studied. For both UV 313 and high-pressure mercury light, the bamboo surface turned red-yellow, and color parameters including Δ E , Δ a , Δ b , and C rapidly increased first and then stabilized for long time, while Δ L showed a similar trend, except for the final decrease. Compared with UV 313, high-pressure mercury lamp light was highly efficient and took less time to induce discoloration. Heat treatments darkened the bamboo color and slowed down photodiscoloration, and the higher temperature led to more photostability. The color change of bamboo scrimber under UV radiation was less and slower than that of untreated bamboo due to high density and heat treatment, and the dark carbonized scrimber changed less than that of the light carbonized scrimber. Relatively high contents of isovanillin, syringaldehyde, β-hydroxypropiovanillone, p-hydroxybenzaldehyde, and syringic acid were identified by GC-MS, and syringaldehyde, 2,6-dimethylbenzoquinone, and 3-hydroxy-4-methoxybenzoic acid were identified by HPLC-MS from a bamboo discoloration layer after high-pressure mercury lamp radiation. These products all contained a conjugated double bond and were conjectured to be degraded from lignin or aromatic extracts. Particularly, 2,6-dimethylbenzoquinone which contained a cyclohexenedione structure without benzene rings, was more chemically stable than other conjugated double bonds with benzene rings, and was supposed to be the final product (chromogenic group) during bamboo photodegradation. Untreated or light-colored bamboo under high-energy UV light initiated highly efficient and effective photodiscoloration, and UV light is recommended for being applied to industrial bamboo dyeing. Compared with traditional chemical dyeing, the photoinduced dyeing method has no chemical addition and is easy to operate and environmental-friendly.


2021 ◽  
Vol 2 (68) ◽  
pp. 57-60
Author(s):  
M. Shamsutdinova ◽  
F. Dzhebirkhanova

The synthesis of complex compounds of 4 - [(2,4-dimethoxybenzyl) amino] benzoic acid (HL) with ions of samarium (III), europium (III), terbium (III), gadolinium (III) and dysprosium (III). According to the data of elemental analysis and thermogravimetry, the obtained complexes are hydrates of the composition LnL3 · nH2O, where n = 0-2. The area of their thermal stability is in the range from 100 ° С to 150 ° С. Electronic and infrared absorption spectra of the ligand and complexes with rare-earth metal ions have been measured. According to the IR spectra, the coordination of the ligand with the metal ion occurs at the carboxyl group. The carboxyl group is bidentate coordinated. To excite luminescence, a line of a mercury lamp with a wavelength of 248 nm was used. The highest luminescence intensity is observed for the coordination compounds Eu3 +, Tb3 +, Sm3 +, and Dy3 +.


2021 ◽  
Author(s):  
Qunxiang Ong ◽  
J.W. Ronnie Teo ◽  
Joshua Dela Cruz ◽  
Elijah Wee ◽  
Winson Wee ◽  
...  

To interrupt SARS-CoV-2 transmission chains, Ultraviolet-C (UVC) irradiation has emerged as a potential disinfection tool to aid in blocking the spread of coronaviruses. While conventional 254-nm UVC mercury lamps have been used for disinfection purposes, other UVC wavelengths have emerged as attractive alternatives but a direct comparison of these tools is lacking with the inherent mechanistic properties unclear. Our results using human coronaviruses, hCoV-229E and hCoV-OC43, have indicated that 277-nm UVC LED is most effective in viral inactivation, followed by 222-nm far UVC and 254-nm UVC mercury lamp. While UVC mercury lamp is more effective in degrading viral genomic content compared to 277-nm UVC LED, the latter results in a pronounced photo-degradation of spike proteins which potentially contributed to the higher efficacy of coronavirus inactivation. Hence, inactivation of coronaviruses by 277-nm UVC LED irradiation constitutes a more promising method for disinfection.


Author(s):  
S. A. Aheika ◽  
V. I. Stsiapura ◽  
V. Yu. Smirnov ◽  
I. I. Stepuro

In a neutral medium, the exposure of thiamine disulfide to the ultraviolet of solar radiation (as well as to the ultraviolet radiation of mercury lamp with λ > 300 nm) results in the formation of a thiamine molecule with closed thiazole ring and a molecule of thiamine thiazolone. Asymmetric thiamine disulfides, e.g., thiamine propyl disulfide, on exposure to ultraviolet (UVA range) produced thiamine and propyl disulfides. Thiamine and thiazolone of thiamine are stable upon exposure to light of 320-400 nm (UVA range). UV irradiation within spectral range of 200-300 nm results in further photodestruction of thiamine and thiamine thiazolone and production of 2-methyl-4-amino-5aminomethyl-pyrimidine as the main photoproduct. The possibility to use thiamine disulfide derivatives as a promising class of anti-cataract drugs as well as drugs to decrease the toxic effect of ultraviolet radiation on human retina is discussed. 


Sign in / Sign up

Export Citation Format

Share Document