Research of Effect on Water Quality of Combined Stainless Steel Plastic Pipe and PPR Pipe

2013 ◽  
Vol 864-867 ◽  
pp. 2108-2111
Author(s):  
Tao Wu ◽  
Zeng Zhang Wang

Taking combined stainless steel plastic pipe and PPR pipe which was widely used in the secondary water supply system as research objects, we do a research of effect on water quality of these pipelines. These test indexes were divided into basic indexes and additional indexes. In addition, heterotrophic bacteria plate count was used to observe the attached bacteria on the inner wall of these two different pipes. The results showed that these two kinds of pipes are qualified for their hygienic safety as drinking water distribution equipments. The effects of pipe wall on water quality increased with the immersion time. Combined stainless steel plastic pipe is better than PPR pipe for less impact on water quality, less biofilm microbes attached, better stability, superior antibacterial effects. The combined stainless steel plastic pipe can give a better hygienic safety protection for drinking water.

2021 ◽  
Author(s):  
Jon Kristian Rakstang ◽  
Michael B. Waak ◽  
Marius M. Rokstad ◽  
Cynthia Hallé

<p>Municipal drinking water distribution networks are complex and dynamic systems often spanning many hundreds of kilometers and serving thousands of consumers. Degradation of water quality within a distribution network can be associated to water age (i.e., time elapsed after treatment). Norwegian distribution networks often consist of an intricate combination of pressure zones, in which the transport path(s) between source and consumer is not easily ascertained. Water age is therefore poorly understood in many Norwegian distribution networks. In this study, simulations obtained from a water network model were used to estimate water age in a Norwegian municipal distribution network. A full-scale tracer study using sodium chloride salt was conducted to assess simulation accuracy. Water conductivity provided empirical estimates of salt arrival time at five monitoring stations. These estimates were consistently higher than simulated peak arrival times. Nevertheless, empirical and simulated water age correlated well, indicating that additional network model calibration will improve accuracy. Subsequently, simulated mean water age also correlated strongly with heterotrophic plate count (HPC) monitoring data from the distribution network (Pearson’s R= 0.78, P= 0.00046), indicating biomass accumulation during distribution—perhaps due to bacterial growth or biofilm interactions—and illustrating the importance of water age for water quality. This study demonstrates that Norwegian network models can be calibrated with simple and cost-effective salt tracer studies to improve water age estimates. Improved water age estimation will increase our understanding of water quality dynamics in distribution networks. This can, through digital tools, be used to monitor and control water age, and its impact on biogrowth in the network.</p>


2020 ◽  
Vol 14 (1) ◽  
pp. 78-83
Author(s):  
Ali Shahryari ◽  
Charlotte D. Smith ◽  
Abolfazl Amini

Background: The consumption of bottled water globally, including Iran, has increased tremendously in recent years. This study was designed to assess the bacteriological quality of bottled water and its compliance with the drinking water regulations. In addition, we evaluated bottled waters for the presence of a variety of genera of bacteria and the effect of storage duration on the extent of bacterial contamination. Methods: Four hundred samples of bottled water belonging to ten different Iranian brands with various production dates were purchased from supermarkets in Gorgan, Iran, from 2017 to 2018. Bacterial quality of bottled water was assessed using heterotrophic plate count (HPC) followed by usual biochemical tests for identification of bacterial genera, and by the API system. Results: The average HPC of bottled water was 9974 colony-forming units per milliliter (CFU/ml). Twelve genera were isolated, among which Bacillus spp. and Escherichia coli were the most and least abundant, respectively. Statistical analysis showed that there was a positive association between water quality and storage duration so that the highest microbial load occurred within the first to third months after bottling. Furthermore, the highest rate of contamination was observed in May when ambient air temperatures commonly reached 40 °C. Conclusion: The bacterial quality of bottled water was not according to the standard of drinking water quality. This study demonstrated the variation in bacterial levels after bottling, which indicates the presence of waterborne heterotrophic bacteria, some of which can pose severe health risks to consumers.


Author(s):  
Valeria Mirela Brezoczki ◽  
◽  
Gabriela Maria Filip ◽  

This paper presents the analysis of the quality indicator of a subterranean raw water source, captured in Crăciunesti, Sighetu Marmatiei, followed by the description of the technological flow of capturing and chlorinating water with the aim of making it drinkable, and the analysis of the obtained values of the physical, chemical and bacteriological indicators. The period within which water quality was monitored for this paper covers four months (December 2016, March, April and May 2017). Within this period the analyses regarding water quality control were carried out by the laboratory of the Water Treatment Baia Mare. The analysis of the obtained results highlighted a series of problems regarding the existence of certain indicators/parameters with values above the legally admissible threshold with regard to water quality. The manganese found in raw water exceeds the admissible threshold by 160%, in December 2016, and by 120% in March 2017, but it is within limits during the months of April and May. The occurrence of colonies developed at 37 °C and 22°C in the raw water requires chemical treatment of the raw water aimed at disinfecting it. The parameters of drinking water correspond to the values admissible through the laws in force, the water being distributed to the consumers through the Drinking water distribution system in Sighetu Marmatiei.


2009 ◽  
Vol 9 (1) ◽  
pp. 67-74 ◽  
Author(s):  
Elise Corbi ◽  
Valérie Jacquemet ◽  
Alain Quendo ◽  
Francine Manciot ◽  
Adeline Lamy ◽  
...  

Lyon, France has the opportunity to distribute in abundance a groundwater resource with a good quality for drinking water. However, the length and the complexity of the distribution network can lead to consumer complaints in some areas of the water distribution system. In order to improve the organoleptic quality of distributed water, the water supplier wants to get a better understanding of potential taste and odour formation and to succeed in controlling it. Since 2006, activities have been taken with targeted analyses and sensory evaluation of water, taking into account both the consumers' private networks and the citywide distribution network. The first results were focused on the occurrence of bromophenols along the water distribution system, the understanding of the mechanisms of formation of such compounds, as well as their incidence on taste-and-odour events at the consumer's home.


2019 ◽  
Vol 2 (1) ◽  
pp. 11 ◽  
Author(s):  
Arif Susanto ◽  
Purwanto Purwanto ◽  
Agus Hadiyarto

Abstract:. The requirement of consumed drinking water so that it does not create disturbance to public health is that it needs a quality monitoring. Water fluoridation in Tembagapura City aims to reach its concentration level toward certain safe level, and it can provide maximum benefits for dental health. Analysis and simulation methods using EPAnet software. The results of hydrolic simulation and water quality for fluoride concentration of each node and link in the drinking water distribution network system have changed in every time change following the drinking water distribution segment. From hydraulic simulations, especially for head and flow at separate points, it consists of simultaneous solution in flow equivalence for every junction and headloss relationship in every link of network as a result of hydraulic balancing. New segment will be made at the end of each link that receives inflow from a node if the quality of the new node is different from the link in the last segment. Every pipe in network contains singular segment where the water quality is in line with the preliminary quality stated in the preliminary node. With the availability of hydraulic model and water quality for fluoride concentration, a further research can be conducted for chlorine decay, growth of by product i.e. Trihalomethans (THMs) as well as water age simultaneously in drinking water supply systems in Tembagapura City.  Keyword: EPAnet, distribution network, fluoride concentration. Abstrak: Persyaratan kualitas air minum yang dikonsumsi masyarakat agar tidak menimbulkan gangguan kesehatan, maka penyelenggara air minum perlu melakukan pemantauan kualitasnya. Fluoridasi air di Kota Tembagapura ditujukan untuk mencapai tingkat konsentrasi fluoride pada level tertentu yang aman dan dapat memberikan manfaat maksimal bagi kesehatan gigi. Metode analisis dan simulasi menggunakan perangkat lunak EPAnet. Hasil simulasi hidrolis dan kualitas air untuk konsentrasi fluoride pada setiap node dan link pada sistem jaringan distribusi air minum berubah pada setiap perubahan waktu mengikuti segmen distribusi air minum tersebut. Dari simulasi hidrolis, khusus untuk head dan aliran pada titik yang terpisah meliputi penyelesaian secara simultan dalam persamaan aliran untuk tiap sambungan (junction), dan hubungan headloss pada setiap link pada jaringan sebagai akibat dari hydrolic balancing. Segmen baru terbentuk pada akhir dari setiap link yang menerima inflow dari sebuah node, jika kualitas node baru berbeda dari link pada segmen terakhir. Setiap pipa dalam jaringan mengandung segmen tunggal, di mana kualitas air sebanding dengan kualitas awal yang ditetapkan di node awal. Dengan tersedianya model hidrolis dan kualitas air untuk konsentrasi fluoride, maka dapat dilakukan penelitian lanjutan untuk peluruhan klorin, pertumbuhan by product yaitu trihalomethans (THMs) serta usia air secara simultan pada sistem penyediaan air minum di Kota Tembagapura.Kata Kunci: EPAnet, jaringan distribusi, konsentrasi fluoride.


2018 ◽  
Vol 4 (12) ◽  
pp. 2080-2091 ◽  
Author(s):  
Isabel Douterelo ◽  
Carolina Calero-Preciado ◽  
Victor Soria-Carrasco ◽  
Joby B. Boxall

This research highlights the potential of whole metagenome sequencing to help protect drinking water quality and safety.


Sign in / Sign up

Export Citation Format

Share Document