Experimental Study on the Twin Roll Strip Casting and Warm Rolling Fe-6.5 wt. %Si Steel Sheet

2013 ◽  
Vol 873 ◽  
pp. 48-53 ◽  
Author(s):  
Feng Quan Zhang ◽  
Zhen Yu Liu ◽  
Zhong Han Luo ◽  
Guang Ming Cao

An Fe-6.5 wt. % Si steel sheet with a final thickness of 0.30 mm was produced by twin roll strip casting and warm rolling process. The effects of casting, warm rolling and annealing process on microstructure, texture and magnetic properties were investigated with optical microscopy, X-ray diffraction and magnetic measurement. The microstructure evolution during preparation was shown as follows: columnar grain and a small amount of fine grain in center (as casted) elongated grains and a small amount of the shear bands along the rolling direction (as rolled) a relatively uniform recrystallized microstructure (as annealed). The texture evolution during preparation was shown as follows: {001} λ fiber texture (as casted) the significant α fiber texture and the weak, inhomogenous γ fiber texture (as warm rolled) the strong {001} λ fiber texture and weak, inhomogenous γ fiber texture (as annealed). The excellent soft magnetic properties were obtained with a very small P1.0/400of 10.751 W/kg and a very high B50up to 1.438 T at optimum annealing condition (1150 °C for 1 h). The research work was useful to develop electrical steel by twin roll continuous casting process.

2011 ◽  
Vol 415-417 ◽  
pp. 947-950
Author(s):  
Hai Tao Liu ◽  
Zhen Yu Liu ◽  
Yu Sun ◽  
Yi Qing Qiu ◽  
Guo Dong Wang

An Fe-6.2wt%Si as-cast strip with equiaxed grains and obvious {001} fiber texture was produced by twin-roll strip casting process. The as-cast strip was successively performed by hot rolling, warm rolling and annealing. The microstructure and texture evolution at each process stage were investigated by using electron backscatter diffraction and x-ray diffraction. It was found that the finally annealed sheet was characterized by large grain size, mild γ-fiber texture and obvious {001} fiber texture. Therefore, a high magnetic induction and a low core loss were obtained in the sheet.


2011 ◽  
Vol 702-703 ◽  
pp. 68-75 ◽  
Author(s):  
Hirofumi Inoue

In order to develop favorable textures for deep drawing of Al-Mg-Si and Mg-Al-Zn alloys that are promising as automotive body panels, we have adopted the symmetric/asymmetric combination rolling (SACR) process consisting of conventional symmetric rolling and subsequent asymmetric rolling at relatively low reduction. The combination of symmetric cold rolling and asymmetric warm rolling for AA6022 sheets leads to the formation of “TD-rotated β-fiber texture”, resulting in the evolution of {111} recrystallization texture after solution treatment at a high temperature. The SACR processed and solution-treated sheets show a high average r-value with small in-plane anisotropy, and consequently the limiting drawing ratio increases significantly, compared to that of the cold-rolled and solution-treated sheets. In the case of AZ31 magnesium alloy, the SACR process by hot rolling causes the formation of a unique texture, which shows two (0001) poles with tilt angles of 0 and −40 degrees from the normal direction (ND) toward the rolling direction (RD). In addition, subsequent annealing weakens intensity of the double-peak texture, so that the drawability is greatly improved in comparison with that of the conventional warm-rolled sheets with a strong basal texture. At the same time, yield strength decreases to some extent, but the SACR processed and annealed sheets exhibit a good balance of strength and formability due to a mixed texture with basal and tilt components.


2012 ◽  
Vol 557-559 ◽  
pp. 1344-1348
Author(s):  
Hong Mei Chen ◽  
Hua Shun Yu ◽  
Guang Hui Min ◽  
Yun Xue Jin

The microstructure and macrotexture of ZK60 alloy sheet were investigated through OM and XRD, which were produced by twin roll casting and sequential warm rolling. Microstructure of twin roll cast ZK60 alloy changed from dendrite structure to fibrous structure with elongated grains and high density shear bands along the rolling direction after warm rolling process at different rolling parameters. The density of shear bands increased with the decreasing of the rolling temperature, or the increasing of per pass rolling reduction. Dynamic recrystallization could be found during the warm rolling process at and above 350oC, and many fine grains could be found in the shear band area. The warm rolled ZK60 alloy sheet exhibited strong (0001) basal pole texture. The formation of the shear bands tends to cause the basal pole tilt slightly to the transverse direction after warm rolling. The intensity of (0001) pole figure increased with the decreasing of rolling temperature, or the increasing of per pass rolling reduction.


2019 ◽  
Vol 150 ◽  
pp. 118-127 ◽  
Author(s):  
Yuan-Xiang Zhang ◽  
Meng-Fei Lan ◽  
Yang Wang ◽  
Feng Fang ◽  
Xiang Lu ◽  
...  

2013 ◽  
Vol 395-396 ◽  
pp. 297-301
Author(s):  
Hong Yu Song ◽  
Hui Hu Lu ◽  
Hai Tao Liu ◽  
Guo Dong Wang

An Fe-3wt% Si as-cast strip was produced by twin-roll strip casting process. The as-cast strip was hot rolled at 1150°C by one pass of 20% reduction and coiled at 550°C. The tensile test was carried out and the elongation was measured. The microstructure and texture of the coiled strip and the fracture surface morphology of the tensile samples were characterized. It is found that the microstructure of the as-cast strip was characterized by columnar ferrite grains with pronounced {001}<0vw> fiber texture and martensite. The microstructure of coiled strip consisted of ferrite grains and pearlite, and the texture was mainly characterized by {001}<0vw> fiber texture. The necking was absent during the tensile test and the elongation of coiled strip was as low as 12%. The fracture surfaces of the tensile samples mainly exhibited cleavage fracture mode with coarse cleavage facets and some ligaments.


2016 ◽  
Vol 879 ◽  
pp. 2014-2019
Author(s):  
Osamu Umezawa ◽  
Norimitsu Koga

Unalloyed titanium was rolled with 20% reduction in each pass at 293 K using a cross rolling mill, where the upper and lower rolling axes were skewed each other at an angle of 0, 5 or 10 degree with parallel position. Multi-pass flat-rolling was carried out without any lubricants up to the true strain of 1, where two kinds of rolling directions such as tandem (uni-direction for all passes) and reverse (opposite direction in every passes) were adopted. The strain of specimens was increased proportionally as higher passes regardless of the rolling conditions. The transverse direction (TD) split deformation texture in titanium was generally developed under the cross angle of 0 degree. In the present strips of tandem, a main orientation was identified as (-12-18)[10-10]. In the case of tandem with the cross angle of 5 degree, a fiber texture was developed along (-12-18). That is the reason why a rotation in the rolling direction (RD) was overlapped. In the case of reverse with the cross angle of 5 degree, the main orientation was separated into [10-10] and [2-311] that were corresponded to TD and RD splits, respectively.


2010 ◽  
Vol 638-642 ◽  
pp. 2781-2786
Author(s):  
Chang Shu He ◽  
Sadahiro Tsurekawa ◽  
Hiroyuki Kokawa ◽  
Xiang Zhao ◽  
Liang Zuo

An AC magnetic field (0.5Tesla) is applied with the field direction perpendicular to the rolling direction during annealing of a 76% cold-rolled IF steel sheet. Microstructure and texture evolution in the as-annealed specimens were determined using SEM based OIM technique. It is found that the recrystallization is noticeably retarded by AC magnetic field annealing. At the early stage of recrystallization (annealing at 650°C for 30min), the development of (111) <123> orientations was favored by the AC magnetic field. With progress of recrystallization (annealing at 700°C and 750°C for 30min), the applied AC magnetic field suppressed the development of γ-fiber recrystallization textures to some extent.


2012 ◽  
Vol 212 (9) ◽  
pp. 1941-1945 ◽  
Author(s):  
Hai-Tao Liu ◽  
Zhen-Yu Liu ◽  
Yi-Qing Qiu ◽  
Yu Sun ◽  
Guo-Dong Wang

Sign in / Sign up

Export Citation Format

Share Document