Microstructure and Texture Evolution of Strip Casting Fe-6.2wt%Si Steel

2011 ◽  
Vol 415-417 ◽  
pp. 947-950
Author(s):  
Hai Tao Liu ◽  
Zhen Yu Liu ◽  
Yu Sun ◽  
Yi Qing Qiu ◽  
Guo Dong Wang

An Fe-6.2wt%Si as-cast strip with equiaxed grains and obvious {001} fiber texture was produced by twin-roll strip casting process. The as-cast strip was successively performed by hot rolling, warm rolling and annealing. The microstructure and texture evolution at each process stage were investigated by using electron backscatter diffraction and x-ray diffraction. It was found that the finally annealed sheet was characterized by large grain size, mild γ-fiber texture and obvious {001} fiber texture. Therefore, a high magnetic induction and a low core loss were obtained in the sheet.

2013 ◽  
Vol 395-396 ◽  
pp. 297-301
Author(s):  
Hong Yu Song ◽  
Hui Hu Lu ◽  
Hai Tao Liu ◽  
Guo Dong Wang

An Fe-3wt% Si as-cast strip was produced by twin-roll strip casting process. The as-cast strip was hot rolled at 1150°C by one pass of 20% reduction and coiled at 550°C. The tensile test was carried out and the elongation was measured. The microstructure and texture of the coiled strip and the fracture surface morphology of the tensile samples were characterized. It is found that the microstructure of the as-cast strip was characterized by columnar ferrite grains with pronounced {001}<0vw> fiber texture and martensite. The microstructure of coiled strip consisted of ferrite grains and pearlite, and the texture was mainly characterized by {001}<0vw> fiber texture. The necking was absent during the tensile test and the elongation of coiled strip was as low as 12%. The fracture surfaces of the tensile samples mainly exhibited cleavage fracture mode with coarse cleavage facets and some ligaments.


2013 ◽  
Vol 873 ◽  
pp. 48-53 ◽  
Author(s):  
Feng Quan Zhang ◽  
Zhen Yu Liu ◽  
Zhong Han Luo ◽  
Guang Ming Cao

An Fe-6.5 wt. % Si steel sheet with a final thickness of 0.30 mm was produced by twin roll strip casting and warm rolling process. The effects of casting, warm rolling and annealing process on microstructure, texture and magnetic properties were investigated with optical microscopy, X-ray diffraction and magnetic measurement. The microstructure evolution during preparation was shown as follows: columnar grain and a small amount of fine grain in center (as casted) elongated grains and a small amount of the shear bands along the rolling direction (as rolled) a relatively uniform recrystallized microstructure (as annealed). The texture evolution during preparation was shown as follows: {001} λ fiber texture (as casted) the significant α fiber texture and the weak, inhomogenous γ fiber texture (as warm rolled) the strong {001} λ fiber texture and weak, inhomogenous γ fiber texture (as annealed). The excellent soft magnetic properties were obtained with a very small P1.0/400of 10.751 W/kg and a very high B50up to 1.438 T at optimum annealing condition (1150 °C for 1 h). The research work was useful to develop electrical steel by twin roll continuous casting process.


2011 ◽  
Vol 702-703 ◽  
pp. 574-577 ◽  
Author(s):  
Daniel Goran ◽  
G. Ji ◽  
M. N. Avettand-Fènoël ◽  
R. Taillard

Texture and microstructure of FSW joined Al and Cu sheets were investigated by means of electron backscatter diffraction (EBSD) technique. The analysis has revealed a strong texture evolution on both sides of the weld interface as well as a very complex microstructure. Grains were found to be fully recrystallized on both sides of the weld and with different average diameters at different specific zones of the weld.


2018 ◽  
Vol 941 ◽  
pp. 176-181 ◽  
Author(s):  
Karin Yvell ◽  
Göran Engberg

The evolution of the deformation structure with strain has been studied using electron backscatter diffraction (EBSD). Samples from interrupted uniaxial tensile tests and from a cyclic tension/compression test were investigated. The evolution of low angle boundaries (LABs) was studied using boundary maps and by measuring the LAB density. From calculations of local misorientations, smaller orientation changes in the substructure can be illustrated. The different orientations developed with strain within a grain, due to operation of different slip systems in different parts of the grain, were studied using a misorientation profile showing substantial orientation changes after a true strain of 0.24. The texture evolution with increasing strain was followed by using inverse pole figures (IPFs). The observed substructure development in the ferritic and austenitic phases could be successfully correlated with the stress-strain curve from a tensile test. LABs were first observed in the different phases when the strain hardening rate changed in appearance indicating that cross slip started to operate as a significant dislocation recovery mechanism. The evolution of the deformation structure is concluded to occur in a similar manner in the austenitic and ferritic phases but with different texture evolution for the two phases.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3608 ◽  
Author(s):  
Jae-Hyung Cho ◽  
Sang-Ho Han ◽  
Geon Young Lee

Texture and microstructure evolution of ingot and twin-roll casted Mg–Al–Mn magnesium sheets were examined during deep drawing at elevated temperatures. The twin-roll casted sheets possessed smaller grain sizes and weaker basal intensity levels than the ingot-casted sheets. The strength and elongation at room temperature for the twin-roll casted sheets were greater than those of the ingot-casted sheets. At elevated temperatures, the ingot-casted sheets showed better elongation than the twin-roll casted sheets. Different size and density of precipitates were examined using transmission electron microscopy (TEM) for both ingot-casted and twin-roll-casted sheets. The deep drawing process was also carried out at various working temperatures and deformation rates, 225 °C to 350 °C and 30 mm/min to 50 mm/min, respectively. The middle wall part of cups were mainly tensile deformation, and the lower bent regions of drawn cups were most thinned region. Overall, the ingot-casted sheets revealed better deep drawability than the twin-roll casted sheets. Microstructure and texture evolution of the top, middle and lower parts of drawn cups were investigated using electron backscatter diffraction. Increased deformation rate is important to activate tensile twins both near the bent and flange areas. Ingot casted sheets revealed more tensile twins than twin-roll casted sheets. Increased working temperature is important to activate non-basal slips and produce the DRXed grain structure in the flange. Dynamic recrystallization were frequently found in the top flanges of the cups. Both tensile twins and non-basal slips contributed to occurrence of the dynamic recrystallization in the flange.


2011 ◽  
Vol 702-703 ◽  
pp. 758-761 ◽  
Author(s):  
Tuan Nguyen Minh ◽  
Jurij J. Sidor ◽  
Roumen H. Petrov ◽  
Leo Kestens

The core loss and magnetic induction of electrical steels are dependent on the microstructure and texture of the material, which are produced by the thermo-mechanical processing. After a conventional rolling process, crystal orientations of the α-(//RD) and γ-(//ND) fibers are strongly present in the final texture. These fibers have a drastically negative effect on the magnetic properties of electrical steels. By applying asymmetric rolling, significant shear strains could be introduced across the thickness of the sheet and thus a deformation texture with more magnetically favorable components is expected. In this study, an electrical steel of 1.23 wt.% Si was subjected to asymmetric warm rolling in a rolling mill with different roll diameters. The evolutions of both deformed and annealed textures were investigated. The texture evolution during asymmetric warm rolling was analyzed by crystal plasticity simulations using the ALAMEL model. A good fit between measured and calculated textures was obtained. The annealing texture could be understood in terms of an oriented nucleation model that selects crystal orientations with a lower than average stored energy of plastic deformation.


1994 ◽  
Vol 343 ◽  
Author(s):  
J. L. Hurd ◽  
K. P. Rodbell ◽  
D. B. Knorr ◽  
N. L. Koligman

ABSTRACTAluminum films 1 μm thick were deposited on oxidized silicon by sputtering and partially ionized beam evaporation to vary the crystallographic texture. These films were patterned into lines and subsequently annealed at 400 °C for 1 h. A strong correlation between the electromigration behavior and the blanket film texture (X-ray diffraction (XRD) / pole figures) has been reported previously for these films. In this work, an Electron Backscatter Diffraction (EBSD) a.k.a. Backscatter Kikuchi Diffraction (BKD) technique was employed using a scanning electron microscope (SEM) to interrogate individual grain orientations. BKD pole figures were acquired for lines ≥0.3 μm wide and for blanket (pad) regions. Identical, inverse pole figures were found for blanket films measured using both XRD and BKD (pads). Furthermore, the BKD (111) fiber texture shows a line width dependency, with narrow lines having a slightly improved texture over blanket (pad) regions. Local grain orientations were investigated near and within electromigration testing sites with characteristic void and hillock morphologies. The relationship of neighboring grain orientations to electromigration damage is shown.


2011 ◽  
Vol 383-390 ◽  
pp. 3954-3959 ◽  
Author(s):  
Shinichi Nishida ◽  
Kazuki Fukudome ◽  
H. Furusawa ◽  
M. Motomura ◽  
H. Watari

Strip casting process is possible to shorten for producing strip. Strip is produced from molten metal continuously and directly by strip casting process. Melt drag process is one of the single roll strip casting process. Melt drag process is simpler than general twin roll strip casting process. One of defect of cast strip is surface conditions, for example surface roughness. Cast strip surface roughness is larger than hot rolled strip. Large strip surface roughness is negative effect for cold rolling after strip casting or hot rolling. The aim of this study is improvement of cast strip surface roughness by melt drag process. We suggested vertical melt drag process. And investigations were operated such us producing conditions of Al-Si alloy strip, surface roughness of cast strip and microstructures.


Sign in / Sign up

Export Citation Format

Share Document