Preparation and Characterization of Nitrogen Doped TiO2 Nanoparticles as an Effective Catalyst in Photodegradation of Phenol under Visible Light

2014 ◽  
Vol 875-877 ◽  
pp. 28-33 ◽  
Author(s):  
Armineh Hassanvand ◽  
Morteza Sohrabi ◽  
Sayed Javid Royaee ◽  
Morteza Jafarikajour

Nitrogen-doped TiO2 nanoparticles of commercial Degussa P25 have been prepared via a direct impregnation reaction using ammonium hydroxide solution as nitrogen source. The Samples were characterized by X-ray diffraction (XRD), BET surface area BJH pore charecterization and scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDX). The results demonstrated that the nitrogen-doped TiO2 nanoparticles had a crystallite size 70.8 nm and a specific surface area of 6.4 m2/g with average pore diameter of 23.3 nm consisting mainly of titanium and oxygen. The photocatalyst activity was determined by degradation of phenol in an impinging stream reactor under visible light irradiation (λ> 400 nm). N-TiO2 catalyst exhibited higher photocatalytic activity in comparison with Degussa P25 under visible light irradiation.

Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2261 ◽  
Author(s):  
Abdul Wafi ◽  
Erzsébet Szabó-Bárdos ◽  
Ottó Horváth ◽  
Mihály Pósfai ◽  
Éva Makó ◽  
...  

Catalysts for visible-light-driven oxidative cleaning processes and antibacterial applications (also in the dark) were developed. In order to extend the photoactivity of titanium dioxide into the visible region, nitrogen-doped TiO2 catalysts with hollow and non-hollow structures were synthesized by co-precipitation (NT-A) and sol–gel (NT-U) methods, respectively. To increase their photocatalytic and antibacterial efficiencies, various amounts of silver were successfully loaded on the surfaces of these catalysts by using a facile photo-deposition technique. Their physical and chemical properties were evaluated by using scanning electron microscopy (SEM), transmission electron microscopy–energy dispersive X-ray spectroscopy (TEM–EDS), Brunauer–Emmett–Teller (BET) surface area, X-ray diffraction (XRD), and diffuse reflectance spectra (DRS). The photocatalytic performances of the synthesized catalysts were examined in coumarin and 1,4-hydroquinone solutions. The results showed that the hollow structure of NT-A played an important role in obtaining high specific surface area and appreciable photoactivity. In addition, Ag-loading on the surface of non-hollow structured NT-U could double the photocatalytic performance with an optimum Ag concentration of 10−6 mol g−1, while a slight but monotonous decrease was caused in this respect for the hollow surface of NTA upon increasing Ag concentration. Comparing the catalysts with different structures regarding the photocatalytic performance, silverized non-hollow NT-U proved competitive with the hollow NT-A catalyst without Ag-loading for efficient visible-light-driven photocatalytic oxidative degradations. The former one, due to the silver nanoparticles on the catalyst surface, displayed an appreciable antibacterial activity, which was comparable to that of a reference material practically applied for disinfection in polymer coatings.


Materials ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 2589 ◽  
Author(s):  
Evdokia Galata ◽  
Eleni A. Georgakopoulou ◽  
Maria-Emmanouela Kassalia ◽  
Nefeli Papadopoulou-Fermeli ◽  
Evangelia A. Pavlatou

In this study, the synthesis of smart, polymerically embedded titanium dioxide (TiO2) nanoparticles aimed to exhibit photo-induced anticancer properties under visible light irradiation is investigated. The TiO2 nanoparticles were prepared by utilizing the sol gel method with different dopants, including nitrogen (N-doped), iron (Fe-doped), and nitrogen and iron (Fe,N-doped). The dopants were embedded in an interpenetrating (IP) network microgel synthesized by stimuli responsive poly (N-Isopropylacrylamide-co-polyacrylicacid)–pNipam-co-PAA forming composite particles. All the types of produced particles were characterized by X-ray powder diffraction, micro-Raman, Fourier-transform infrared, X-ray photoelectron, ultra-violet-visible spectroscopy, Field Emission Scanning Electron, Transmission Electron microscopy, and Dynamic Light Scattering techniques. The experimental findings indicate that the doped TiO2 nanoparticles were successfully embedded in the microgel. The N-doped TiO2 nano-powders and composite particles exhibit the best photocatalytic degradation of the pollutant methylene blue under visible light irradiation. Similarly, the highly malignant MDA-MB-231 breast cancer epithelial cells were susceptible to the inhibition of cell proliferation at visible light, especially in the presence of N-doped powders and composites, compared to the non-metastatic MCF-7 cells, which were not affected.


2018 ◽  
Vol 43 (9) ◽  
pp. 4335-4346 ◽  
Author(s):  
Yang Li ◽  
Liyuan Kuang ◽  
Dequan Xiao ◽  
Appala Raju Badireddy ◽  
Maocong Hu ◽  
...  

Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 987 ◽  
Author(s):  
Hui Zhang ◽  
Qi Tang ◽  
Qingshan Li ◽  
Qingwen Song ◽  
Hailiang Wu ◽  
...  

In this study, the effects of disperse blue dye-sensitization on the photocatalytic properties of the Ag-N co-doped TiO2 nanoparticles loaded on polyethylene terephthalate (PET) filaments are investigated under visible light irradiation. The microstructure and photocatalytic properties of the as-synthesized TiO2 nanocomposites, as well as the as-prepared PET filaments, are systematically characterized. The photocatalytic performance of the PET filaments coated with the Ag-N co-doped TiO2 nanoparticles sensitized with disperse blue dyes is evaluated via its capacity of photo-degrading methyl orange (MO) dyes under visible light irradiation. It is found that the holes are the predominant reactive radical species and the hydroxyl and superoxide radicals play a subordinate role in the photocatalytic reaction process. The reaction rate constant of the photocatalytic composite filaments is nearly 4.0 times higher than that of the PET filaments loaded solely with TiO2 nanoparticles. The resultant photocatalytic composite filaments are evident to be capable of repeatedly photo-degrading MO dyes without losing its photocatalytic activity significantly.


2010 ◽  
Vol 21 (1) ◽  
pp. 117-121 ◽  
Author(s):  
Min Li ◽  
Qun Zeng Huang ◽  
Dong Fang Qiu ◽  
Zhu Jin Jiao ◽  
Zhao Hui Meng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document