Effect of Hydrogen Bonds to Form Complexes for N Active Structures which Contained in Coal and the Ca-Based Inhibitor

2014 ◽  
Vol 881-883 ◽  
pp. 118-121 ◽  
Author(s):  
Chao Yu Hao ◽  
Qing Biao Zhao ◽  
Ji Ren Wang ◽  
Gui Long Chi

Based on the theory of coordinate inhibition three nitrogen-containing active structures of different aromatic in coal were established. Using quantum chemistry calculation method, the effect of hydrogen bonding on the formation of complexes that formed by three nitrogen-containing active structures of different aromatic and inhibitor were calculated in B3LYP/6-311G* levels. The results show that hydrogen bond can make H2O participation in forming complexes which formed by three nitrogen-containing active structures of different aromatic and metal ions. Hydrogen bonds play a molecular recognition and guiding role in the process of H2O involved in the formation of complexes. After H2O participating ligand through hydrogen bonds, the complexes formed Ca-O-H-O four-membered ring structure in the geometrical structures. It Shows that its stability are improved and not easy to contacts with O or reacting. It making coal spontaneous combustion can be well inhibition. After H2O participating ligand, aromatic change had little effect in stability of the complexes. It shows that different ranks of coal can get better inhibition effect after H2O participating ligand.

Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5256
Author(s):  
Yi Zhang ◽  
Jun Xu ◽  
Deming Wang

Inert gases can effectively inhibit coal spontaneous combustion. In this paper, the inhibition effect of inert gases (N2 and CO2) on coal spontaneous combustion was studied. In the low-temperature oxidation stage, the constant-temperature heat release and apparent activation energy of coal sample were measured and calculated by the C80 micro-calorimeter. In the high-temperature combustion stage, the critical temperature, maximum peak temperature, ignition temperature, and burn-out temperature of coal samples were analyzed by the synchronous thermal analyzer. The results demonstrate that with the decrease of O2 concentration, the oxidation heat release of coal samples drops gradually while the apparent activation energy increases gradually. In the N2 and CO2 atmospheres, as the O2 concentration is reduced to 1.5% and 3%, respectively, the value of apparent activation energy changes from negative to positive, and the spontaneous reaction transits to a nonspontaneous reaction. The TG-DTG (thermogravimetric-derivative thermogravimetric) curve of coal sample in the high-temperature combustion stage indicates that the critical temperature exhibits a W-shaped trend with the decrease of O2 concentration, which also leads to gradual increases of maximum peak temperature, ignition temperature, and burn-out temperature. The above results signify that increasing the inert gas concentration can gradually reduce the oxidation and combustion rate and improve the inhibition effect on coal spontaneous combustion. In addition, when the O2 concentration is the same, the inhibition effect of CO2 on coal spontaneous combustion is superior to that of N2.


Fuel ◽  
2022 ◽  
Vol 310 ◽  
pp. 122268
Author(s):  
Peiyu Liu ◽  
Zenghua Li ◽  
Xiaoyan Zhang ◽  
Jinhu Li ◽  
Guodong Miao ◽  
...  

2021 ◽  
Author(s):  
Xin‐xiao Lu ◽  
Xue Xue ◽  
Cheng‐yan Wang ◽  
Guo‐yu Shi ◽  
Yun Xing ◽  
...  

ACS Omega ◽  
2021 ◽  
Vol 6 (10) ◽  
pp. 6681-6690
Author(s):  
Xuanxuan Huang ◽  
Yongliang Xu ◽  
Yan Wang ◽  
Yao Li ◽  
Lanyun Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document