combustion experiment
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 12)

H-INDEX

7
(FIVE YEARS 2)

2021 ◽  
Vol 35 (6) ◽  
pp. 85-93
Author(s):  
Si-Kuk Kim ◽  
Byeong-Kil Chae ◽  
Yong-Taek Han

Investigation techniques for fire prevention in low-temperature warehouses were studied using energy dispersive X-ray fluorescence (ED-XRF). In the first experiment, a sample (galvanized steel sheet plus urethane foam plus sandwich panel) was burned with 500 mL of a flammable liquid (gasoline, thinner, kerosene, and light oil)/ Then, the component change of the sample was measured. In the combustion experiment, there was a difference in the heat of combustion depending on the type of flammable liquid; however, as a result of measuring the component change of the sample with ED-XRF after combustion, the largest component change was measured in the combustion experiment with gasoline. The change was in the order of thinner, kerosene, and diesel. Using ED-XRF, it was possible to distinguish the flammable liquid used in the experiment by measuring the component change of the sample resulting from the difference in the combustion heat of the flammable liquid. A second experiment was conducted under the same conditions as the first experiment, assuming a fire brigade fire suppression condition, and the combustion time of the flammable liquid was limited to 600 s. A combustion characteristic of flammable liquids is that the temperature and heat flux reach the maximum value within 300 s after the start of combustion regardless of the type of liquid. Because the change of composition was confirmed in the order of light oil, it was possible to distinguish the flammable liquid used at the fire site using the ED-XRF measurement result.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 43
Author(s):  
Xianglei Liu ◽  
Tongxin Guo ◽  
Pengfei Zhang ◽  
Zhenkai Jia ◽  
Xiaohua Tong

To optically capture and analyze the structure and changes of the flow field of a weak airflow object with high accuracy, this study proposes novel weak flow field extraction methods based on background-oriented schlieren. First, a fine background pattern texture and a sensor network layout were designed to satisfy the requirement of weak flow field extraction. Second, the image displacement was extracted by calculating the correlation matrix in the frequency domain for a particle image velocimetry algorithm, and further calculations were performed for the density field using Poisson’s equation. Finally, the time series baseline stacking method was proposed to obtain the flow field changes of weak airflow structures. A combustion experiment was conducted to validate the feasibility and accuracy of the proposed method. The results of a quad-rotor unmanned aerial vehicle experiment showed that the clear, uneven, and continuous quantitative laminar flow field could be obtained directly, which overcame the interference of the weak airflow, large field of view, and asymmetrical steady flow.


AIAA Journal ◽  
2021 ◽  
pp. 1-17
Author(s):  
Vahid Sharifi ◽  
Christian Beck ◽  
Bertram Janus ◽  
Andreas M. Kempf

Author(s):  
Masateru Sonehara ◽  
Mitsuhiro Aoyagi ◽  
Akihiro Uchibori ◽  
Takashi Takata ◽  
Hiroyuki Ohshima ◽  
...  

Abstract In order to investigate the effect of sodium combustion, Sandia National Laboratories (SNL) and Japan Atomic Energy Agency (JAEA) have exchanged information of sodium combustion modeling and related experimental data in the framework of Civil Nuclear Energy Research and Development Working Group (CNWG). This collaboration includes a benchmark analysis of the SNL Surtsey spray combustion experiment (SNL T3 experiments) using AQUA-SF and SPHINCS in JAEA. In this paper, investigation into multi-dimensional effect and best estimate for T3 experiment with AQUA-SF are conducted as validation and verification of the code. A spray combustion is characterized by formation of sodium droplet cloud due to pressure difference and their spreading with combustion. Therefore, the combustion phenomenon will be much affected by spatial distributions of parameters such as gas temperature, gas velocity and oxygen concentration. As a best estimate analysis, the spray burning duration is adjusted in the computation in order to take into account the temporary suppression of the spray combustion observed in the experiment. Furthermore, droplet size of SPHINCS and AQUA-SF are optimized to represent the T3 experimental results. For the best estimate in AQUA-SF, sodium droplet size needs to be set larger than SPHINCS in order to decrease the surface area and suppress the spray burning rate. These adjustment leads to more precise representation of the measurements in T3 experiment.


Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3353
Author(s):  
Liujie Yao ◽  
Rong Zhu ◽  
Yixing Tang ◽  
Guangsheng Wei ◽  
Kai Dong

During the converter steelmaking process, the presence of supersonic oxygen jets can provide oxygen to high-temperature metal baths that promotes chemical reactions in the bath, accelerates the smelting rhythm, and facilitates a uniform distribution of the ingredients in the bath. In this paper, a computational fluid dynamics (CFD) model with combustion reactions is established and compared to the results of combustion experiment. This paper studies the behavior and fluid flow characteristics of supersonic oxygen jets under different environmental compositions under a steelmaking temperature of 1873 K. This validated CFD model can be used to investigate the effect of furnace gas on supersonic oxygen jet characteristics during the converter steelmaking process. The results indicate that the composition of furnace gas has an impact on the characteristics of the oxygen jet. Specifically, as the carbon monoxide (CO) volume fraction increases, the high velocity region of supersonic oxygen jet increases, and the high temperature and the high turbulent kinetic energy regions expand.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Pengzhong Liu ◽  
Fang Niu ◽  
Xuewen Wang ◽  
Fei Guo ◽  
Wei Luo ◽  
...  

The swirl burner with a prechamber was used in a 14 MW pulverized-coal combustion experiment to investigate the influence of inner and secondary air ratios (ISA/OSA) on the combustion characteristic and flame shape in this work. The temperatures and species concentrations in the prechamber were measured via the flue gas analyzer and thermocouples. The flame shape beyond the prechamber outlet was captured by using a high-speed camera. The results showed that the combustion efficiency was increased and low nitrogen combustion was achieved by adopting the swirl burner with a prechamber. The high temperature corrosion and slagging phenomenon did not occur in the prechamber. The influence of ISA/OSA on temperature and species concentration profiles at different areas in the prechamber was different. The flame shape size exhibited an inflection point with increasing ISA/OSA. Considering, comprehensively, the temperature peak, near wall temperature, oxygen-free zone, CO concentration, flame length, flame diameter, and divergence angle, the case of ISA/OSA =1 : 2 had great processing on combustion efficiency and NOx emission. Thus, ISA/OSA = 1 : 2 was selected as the optimized case under experiment conditions.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1043
Author(s):  
Fuhai Liu ◽  
Rong Zhu ◽  
Guangsheng Wei ◽  
Shiliang Fan

During the electric arc furnace steelmaking process, the coherent jet technology was widely used to protect the kinetic energy of the supersonic oxygen jet and achieve better mixing effects. Comparing with the conventional oxygen lance, the coherent lance could increase the surface area of impaction cavity, resulting in a better stirring effect and higher reaction rate. However, there was limited research about the effect of restriction structure for the coherent lance tip on the flow field characteristic of the main oxygen jet. In this research, three kinds of restriction structures have been investigated by numerical simulation and combustion experiment at room and high ambient temperature conditions. Then an optimum restriction structure would be tested in a 75 t electrical arc furnace steelmaking process to verify its metallurgical property.


2020 ◽  
Vol 2020 ◽  
pp. 1-7 ◽  
Author(s):  
Gao Ke ◽  
Liu Zimeng ◽  
Jia Jinzhang ◽  
Liu Zeyi ◽  
Aiyiti Yisimayili ◽  
...  

Polymer combustion is an important factor in mine fires. Based on the actual environment in a mine tunnel, a cable combustion experiment platform was established to study the regularities of the cable fire spread speed and smoke temperature under different conditions, including various fire loads and ventilation speeds. The flame change and molten dripping behaviour during the fire spread process were also analyzed. The experimental results show that the flame-retardant cable can be ignited and continuously burnt at a certain wind speed, but the combustion can be restrained at high wind speed. The combustion speed of the flame-retardant cable is affected by the fire load and ventilation speed. The combustion droplets can change the shape of the flame, which can consequently ignite other combustible materials. The analysis of the experimental results provides an important basis for the prevention of tunnel fires.


Sign in / Sign up

Export Citation Format

Share Document