A New Type of Heat Exchanger for Ventilation in Buildings with Nearly-Zero Energy Consumption

2014 ◽  
Vol 899 ◽  
pp. 231-234 ◽  
Author(s):  
Petr Horák ◽  
Adam Pavel ◽  
Iva Ambrožová

This article describes a new type of hollow-fiber heat exchanger that provides similar heating performance to conventional metal heat exchangers commonly used in air conditioning systems but at lower cost and greater simplicity. While factors such as fragility and element fouling have yet to be optimized, the exchanger shows great promise for application in buildings aiming at close-to-zero energy consumption.

2003 ◽  
Author(s):  
Tony D. Chen

Air-cooled heat exchangers with three tube rows are commonly seen in domestic air-conditioning systems. The analytical solutions of heat exchanger effectiveness for three-row plate fin-and-tube heat exchangers with alternating circuitries have been derived and expressed explicitly in terms of heat capacity ratio and number of transfer units in the recent study. These set of exact solutions serve as a basic tool in designing heat exchanger circuitry to its most accurate possible effectiveness. Comparison of plate-fin-tube heat exchanger effectiveness between airside unmixed and mixed for three-row configurations shows that the effectiveness could be different from 0.3 to 2.4% for the NTUs (Number of Thermal Units) range from 1.0 to 3.0. On the other hand, the result of the comparison of effectiveness between identical and alternating circuiting for 3-row crossflow heat exchangers shows that alternating circuiting could have less effectiveness than identical circuiting from 0.4 to 8.8% in the NTUs range from 1.0 to 3.0. Nevertheless, alternating circuit has its benefit for lower NTU cases, result shows that it could have 1.7 to 0.1% advantages over identical flow arrangement for 2-row heat exchangers with NTUs range from 1.0 to 2.0.


2021 ◽  
Vol 11 (11) ◽  
pp. 5193
Author(s):  
Song He ◽  
Wang Chen ◽  
Wansheng Yang ◽  
Xudong Zhao

Air conditioning energy consumption accounts for most building energy consumption, indoor dehumidification is the main cause of air conditioning energy consumption. Optimize the dehumidification methods of air conditioning systems have great significance to the development of green buildings and people’s pursuit of comfort. Improvement of fins on air conditioning heat exchangers is a hot topic of current research and has achieved considerable results in terms of indoor dehumidification and energy saving compared to traditional air conditioners. This paper reviews two kinds of heat exchangers modified by coating, including desiccant-coated heat exchangers and hydrophobic/hydrophilic coated heat exchangers. For desiccant-coated heat exchangers, the preparation methods of advanced desiccant materials and the possibilities of using this material to achieve excellent energy efficiencies were presented, and the operating parameters that affect thermal performance and dehumidification are determined, including airflow temperature, air velocity, inlet air relative humidity, and regeneration temperature. For hydrophobic/hydrophilic coated heat exchangers, different kinds of hybrid hydrophobic-hydrophilic surfaces are highlighted for they are a high water droplet nucleation rate and surface heat transfer efficiency. In addition, the challenges and future works are explained at last. This paper will provide a valuable reference for the follow-up research, which will be helpful for indoor humidity control and reducing the energy consumption of air conditioning.


2012 ◽  
Vol 170-173 ◽  
pp. 2546-2549 ◽  
Author(s):  
Jian Lv ◽  
Fang Yu ◽  
Guo Min Zhao ◽  
Jun Mei Zhang ◽  
Hong Xing Yang

An experimental test has been conducted to determine the effect of heat pipe heat exchangers for pre-cooling and re-heating performance of central air-conditioning systems in Hung Hom Sport Centre. The objectives of this research project are to investigate the energy recovery efficiency from using the heat pipe heat exchangers in air conditioning system. The annual energy saving by using the heat pipe heat exchangers. The effect of energy recovery efficiency is significant.


2011 ◽  
Vol 32 (4) ◽  
pp. 307-327 ◽  
Author(s):  
YH Yau ◽  
M Ahmadzadehtalatapeh

The effect of heat pipe heat exchanger on the heat recovery was studied in the tropics. The performance of the heat exchanger was monitored during the one week of operation (168 h) to find out the performance characteristic curves. Three coil face velocities namely, 2, 2.2 and 2.5 m/s were tested and the temperature of return air was controlled at 24°C. The relevant empirical equations were then employed for the hour-by-hour prediction of the energy recovery by the heat pipe heat exchanger for the whole year. The impact of inside design temperature on the heat recovery by the heat exchanger was also studied. The thermal performance of the heat pipe heat exchanger was simulated based on the effectiveness-NTU method and the theoretical values were compared with the experimental data. Practical application: Performance improvement of the heating, ventilating and air conditioning systems is a challenge to the designers. The results obtained from this research work could serve as a practical guide for engineers who are intending to use heat pipe heat exchangers in the heating, ventilation and air conditioning systems operating in tropical climates. Engineers and researchers have the potential to use the recommended empirical performance equations to examine the impact of heat pipe heat exchangers on the performance of the current air conditioning systems. Moreover, these empirical performance equations enable the year-round operating effect of heat pipe heat exchangers on energy savings to be predicted realistically.


Volume 3 ◽  
2004 ◽  
Author(s):  
Tony D. Chen

Air-cooled heat exchangers with six tube rows are commonly seen in air-conditioning systems for large commercial and industry buildings. The analytical solutions of heat exchanger effectiveness for 6-row plate fin-and-tube heat exchangers with alternating circuitries have been derived and expressed explicitly in terms of heat capacity ratio, number of transfer units, and the dimensionless fluid temperature to the inlet of each row and section in this study. This set of exact solutions serve as a basic tool in designing heat exchanger circuitry to its most accurate effectiveness. Comparison of effectiveness between pure and alternating circuiting for 6-row crossflow heat exchangers shows that alternating circuiting could have less effectiveness than pure crossflow with identical circuiting from 1.0 to 7.9% for cases of NTUs range from 1.0 to 3.0 and capacity ratio of 0.5. Nevertheless, alternating circuit has its benefit of lowering the temperature difference between air- and refrigerant-flow, which leads to less pressure drop and less flow maldistribution, therefore resulting in better overall heat exchanger performance.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 81
Author(s):  
Rongjiang Ma ◽  
Shen Yang ◽  
Xianlin Wang ◽  
Xi-Cheng Wang ◽  
Ming Shan ◽  
...  

Air-conditioning systems contribute the most to energy consumption among building equipment. Hence, energy saving for air-conditioning systems would be the essence of reducing building energy consumption. The conventional energy-saving diagnosis method through observation, test, and identification (OTI) has several drawbacks such as time consumption and narrow focus. To overcome these problems, this study proposed a systematic method for energy-saving diagnosis in air-conditioning systems based on data mining. The method mainly includes seven steps: (1) data collection, (2) data preprocessing, (3) recognition of variable-speed equipment, (4) recognition of system operation mode, (5) regression analysis of energy consumption data, (6) constraints analysis of system running, and (7) energy-saving potential analysis. A case study with a complicated air-conditioning system coupled with an ice storage system demonstrated the effectiveness of the proposed method. Compared with the traditional OTI method, the data-mining-based method can provide a more comprehensive analysis of energy-saving potential with less time cost, although it strongly relies on data quality in all steps and lacks flexibility for diagnosing specific equipment for energy-saving potential analysis. The results can deepen the understanding of the operating data characteristics of air-conditioning systems.


Sign in / Sign up

Export Citation Format

Share Document