A Semi-Fuzzy Logic Signal Optimization Model of an Isolated Oversaturated Intersection

2014 ◽  
Vol 905 ◽  
pp. 481-486
Author(s):  
Jian Zhi Gao ◽  
Jia Feng Yuan ◽  
Zhi Yun Zou

A semi-fuzzy logic signal optimization model is proposed aimed at the current frequently oversaturated situation of urban intersections. The model consists of two modules, namely phase optimization module and green time extender module. The phase optimization module is to choose the optimal phase by taking intersection through efficiency and vehicle delay into consideration. The green time extender module determines whether to extend or terminate the current phase green time using improved fuzzy logic control method. The real-time traffic condition on all lanes that enter the intersection are input parameters of signal timing in the whole signal optimization process, so it can make adaptive adjustments about signal timing according to the change of real-time traffic condition, which make it sure that the traffic on all lanes can cross the intersection orderly in the most reasonable phase within the most appropriate green time.

2015 ◽  
Vol 7 (10) ◽  
pp. 168781401561350 ◽  
Author(s):  
Pengpeng Jiao ◽  
Zhihong Li ◽  
Meiqi Liu ◽  
Dongyue Li ◽  
Yangwei Li

2020 ◽  
Vol 7 (4) ◽  
pp. 667
Author(s):  
Gede Herdian Setiawan ◽  
I Ketut Dedy Suryawan

<p>Pertumbuhan jumlah kendaraan yang semakin meningkat setiap tahunnya mengakibatkan volume kendaraan yang melintasi ruas jalan semakin padat yang kerap mengakibatkan kemacetan lalu lintas. Kemacetan lalu lintas dapat menjadi beban biaya yang signifikan terhadap kegiatan ekonomi masyarakat. Informasi lalu lintas yang dinamis seperti informasi kondisi lalu lintas secara langsung <em>(real time)</em> akan membantu mempengaruhi aktivitas masyarakat pengguna lalu lintas untuk melakukan perencanaan dan penjadwalan aktivitas yang lebih baik. Penelitian ini mengusulkan model pengamatan kondisi lalu lintas berbasis data GPS pada <em>smartphone</em>, untuk informasi kondisi lalu lintas secara langsung. GPS <em>Receiver</em> pada <em>smartphone</em> menghasilkan data lokasi secara instan dan bersifat mobile sehingga dapat digunakan untuk pengambilan data kecepatan kendaraan secara langsung. Kecepatan kendaraan diperoleh berdasarkan jarak perpindahan koordinat kendaraan dalam satuan detik selanjutnya di konversi menjadi satuan kecepatan (km/jam) kemudian data kecepatan kendaraan di proses menjadi informasi kondisi lalu lintas. Secara menyeluruh model pengamatan berfokus pada tiga tahapan, yaitu akuisisi data kecepatan kendaraan berbasis GPS pada <em>smartphone</em>, pengiriman data kecepatan dan visualisasi kondisi lalu lintas berbasis GIS. Pengujian dilakukan pada ruas jalan kota Denpasar telah mampu mendapatkan data kecepatan kendaraan dan mampu menunjukkan kondisi lalu lintas secara langsung dengan empat kategori keadaan lalu lintas yaitu garis berwarna hitam menunjukkan lalu lintas macet dengan kecepatan kendaraan kurang dari 17 km/jam, merah menunjukkan padat dengan kecepatan kendaraan 17 km/jam sampai 27 km/jam, kuning menunjukkan sedang dengan kecepatan kendaraan 26 km/jam sampai 40 km/jam dan hijau menunjukkan lancar dengan kecepatan kendaraan diatas 40 km/jam.</p><p> </p><p><em><strong>Abstract</strong></em></p><p class="Abstract"><em>The growth in the number of vehicles that is increasing every year has resulted in the volume of vehicles crossing the road increasingly congested which often results in traffic congestion. Traffic congestion can be a significant cost burden on economic activities. Dynamic traffic information such as information on real time traffic conditions will help influence the activities of the traffic user community to better plan and schedule activities. This study proposes a traffic condition observation model based on GPS data on smartphones, for information on real time traffic conditions. The GPS Receiver on the smartphone produces location and coordinate data instantly and is mobile so that it can be used for direct vehicle speed data retrieval. Vehicle speed is obtained based on the displacement distance of the vehicle's coordinates in units of seconds and then converted into units of speed (km / h), the vehicle speed data is then processed into information on traffic conditions. Overall, the observation model focuses on three stages, namely GPS-based vehicle speed data acquisition on smartphones, speed data delivery and visualization of GIS-based traffic conditions. Tests carried out on the Denpasar city road segment have been able to obtain vehicle speed data and are able to show traffic conditions directly with four categories of traffic conditions, namely black lines indicating traffic jammed with vehicle speeds of less than 17 km / h, red indicates heavy with speed vehicles 17 to 27 km / h, yellow indicates medium speed with vehicles 26 km/h to 40 km / h and green shows fluent with vehicle speeds above 40 km / h.</em></p><p><em><strong><br /></strong></em></p>


2015 ◽  
Vol 2015 ◽  
pp. 1-19 ◽  
Author(s):  
Zongjian He ◽  
Buyang Cao ◽  
Yan Liu

Real-time traffic speed is indispensable for many ITS applications, such as traffic-aware route planning and eco-driving advisory system. Existing traffic speed estimation solutions assume vehicles travel along roads using constant speed. However, this assumption does not hold due to traffic dynamicity and can potentially lead to inaccurate estimation in real world. In this paper, we propose a novel in-network traffic speed estimation approach using infrastructure-free vehicular networks. The proposed solution utilizes macroscopic traffic flow model to estimate the traffic condition. The selected model only relies on vehicle density, which is less likely to be affected by the traffic dynamicity. In addition, we also demonstrate an application of the proposed solution in real-time route planning applications. Extensive evaluations using both traffic trace based large scale simulation and testbed based implementation have been performed. The results show that our solution outperforms some existing ones in terms of accuracy and efficiency in traffic-aware route planning applications.


Author(s):  
Weiran Yao ◽  
Sean Qian

The main question to address in this paper is to recommend optimal signal timing plans in real time under incidents by incorporating domain knowledge developed with the traffic signal timing plans tuned for possible incidents, and learning from historical data of both traffic and implemented signals timing. The effectiveness of traffic incident management is often limited by the late response time and excessive workload of traffic operators. This paper proposes a novel decision-making framework that learns from both data and domain knowledge to real-time recommend contingency signal plans that accommodate non-recurrent traffic, with the outputs from real-time traffic prediction at least 30 min in advance. Specifically, considering the rare occurrences of engagement of contingency signal plans for incidents, it is proposed to decompose the end-to-end recommendation task into two hierarchical models—real-time traffic prediction and plan association. The connections between the two models are learnt through metric learning, which reinforces partial-order preferences observed from historical signal engagement records. The effectiveness of this approach is demonstrated by testing this framework on the traffic network in Cranberry Township, Pennsylvania, U.S., in 2019. Results show that the recommendation system has a precision score of 96.75% and recall of 87.5% on the testing plan, and makes recommendations an average of 22.5 min lead time ahead of Waze alerts. The results suggest that this framework is capable of giving traffic operators a significant time window to access the conditions and respond appropriately.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Hua-pu Lu ◽  
Zhi-yuan Sun ◽  
Wen-cong Qu

With the rapid development of urban informatization, the era of big data is coming. To satisfy the demand of traffic congestion early warning, this paper studies the method of real-time traffic flow state identification and prediction based on big data-driven theory. Traffic big data holds several characteristics, such as temporal correlation, spatial correlation, historical correlation, and multistate. Traffic flow state quantification, the basis of traffic flow state identification, is achieved by a SAGA-FCM (simulated annealing genetic algorithm based fuzzyc-means) based traffic clustering model. Considering simple calculation and predictive accuracy, a bilevel optimization model for regional traffic flow correlation analysis is established to predict traffic flow parameters based on temporal-spatial-historical correlation. A two-stage model for correction coefficients optimization is put forward to simplify the bilevel optimization model. The first stage model is built to calculate the number of temporal-spatial-historical correlation variables. The second stage model is present to calculate basic model formulation of regional traffic flow correlation. A case study based on a real-world road network in Beijing, China, is implemented to test the efficiency and applicability of the proposed modeling and computing methods.


Sign in / Sign up

Export Citation Format

Share Document