The Effect of Deterioration on Insulating Surface due to Flashover under AC Electric Field Stressed by Water Droplets

2014 ◽  
Vol 931-932 ◽  
pp. 979-983
Author(s):  
Sackthavy Chandavong ◽  
Kittipong Tonmitr ◽  
Arkom Kaewrawang

This paper presents the effect of the flashover on insulating surface under alternative current (AC) electric field stressed by humidity factor. It is obviously demonstrated about the insulator deterioration due to an ageing, partial discharge (PD) when it is used in services. Epoxy resin with the water droplets is brought to test by high voltage AC until flashover voltage levels. The flashover level on insulator surface depends on the volume and the number of the water droplets. The highest flashover voltage is 52.2 kV for the insulator surface without humidity, but the lowest voltage is 43.5 kV for water droplets of 1, 2, 3 and 4 drops (0.5, 1.0, 1.5 and 2.0 ml). Consequently, it leads to use the lower voltage respectively. The deformation of the water drop was oscillated, moved, elongated and broken up in to a several small drops on insulating surface. PD was the result of the flashover phenomena which causes the damage of the insulator. These results lead to protect the insulator surface under humidity effect from flashover phenomena.

2011 ◽  
Vol 130-134 ◽  
pp. 3276-3279
Author(s):  
Zong Xi Zhang ◽  
Shan Feng Yin

With the accelerating construction of strong smart grid, and the grid voltage level rising, performance requirements for the electrical insulation of electrical equipment also continue to increase. In terms of the advantages of RTV on antifouling, RTV-based paints coated insulator coating capacity of its flash tolerance can significantly increase, mainly due to RTV coating hydrophobic hydrophobicity and migration. But when the hydrophobic surface is in the fully wet, many small drops of water in the surface will be gathered into big drops of water, and these large droplets will distort the surface electric field of the medium. So the flashover voltage of the hydrophobic surface’s separated water droplets under DC electric field are analyzed comparatively in this paper, while some influencing factors such as different medias and volume of water drops, are introduced in specific experiments, and their effects on the flashover voltage are analyzed; under DC electric field experiment on the surface of hydrophobic and hydrophilic surface flashover voltage drops separation characteristics were studied.


2014 ◽  
Vol 1025-1026 ◽  
pp. 803-808
Author(s):  
Sackthavy Chandavong ◽  
Kittipong Tonmitr ◽  
Arkom Kaewrawang

This paper presents the comparison of water droplets on insulating surface under alternating current (AC) and direct current (DC) electric field. Besides that, it is demonstrated about the insulator deterioration under both electric field stressed due to an ageing and partial discharge (PD) phenomenon. The vital parameters factors are water droplets conductivity, droplet volume, surface roughness and droplet positioning that they cause to occur the electric field intensification. The field is intensified at the interface between the droplet, air and insulating material. Thus, the PD occurred due to electric field intensification increases with the deformed droplet. The deformation of water droplet under AC electric field stress is more intense than DC field. The electrostatic forces change the droplet shapes and spread them along the electric field direction. The local electric field intensification provokes the PD giving way to reduction of hydrophobicity of insulator surfaces. In addition, the PD activity could appear as a trigger for a surface breakdown. And the localized arcs cause damage to insulating material then finally leads to deterioration of insulation materials and the pollutant contamination.


2017 ◽  
Vol 7 (1) ◽  
pp. 1323-1328 ◽  
Author(s):  
C. Charalambous ◽  
M. Danikas ◽  
Y. Yin ◽  
N. Vordos ◽  
J. W. Nolan ◽  
...  

It is well known that polyethylene (PE) and cross-linked polyethylene (XLPE) are suitable insulating materials for underground cables. Samples of PE and of XLPE with MgO nanoparticles were investigated regarding their flashover behaviour with a uniform electric field and water droplets of various conductivities. In the present paper, the effect of the mounting arrangement of the water drops on the value of the flashover voltage and the effect of the volume of dripping water on the flashover voltage were also studied. Surface damages were analyzed using Scanning Electron Microscopy (SEM) studies and the study of the nano-structure of the samples was studied using the SAXS system.


AIP Advances ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 065307 ◽  
Author(s):  
Shichao Wei ◽  
Haiyun Jin ◽  
Huimin Zhou ◽  
Kunpeng Yang ◽  
Naikui Gao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document