Electric field behavior of water drop on composite insulator surface under DC stress

Author(s):  
Naresh Kumar Challagondla ◽  
Heinz-H Schramm
2014 ◽  
Vol 931-932 ◽  
pp. 979-983
Author(s):  
Sackthavy Chandavong ◽  
Kittipong Tonmitr ◽  
Arkom Kaewrawang

This paper presents the effect of the flashover on insulating surface under alternative current (AC) electric field stressed by humidity factor. It is obviously demonstrated about the insulator deterioration due to an ageing, partial discharge (PD) when it is used in services. Epoxy resin with the water droplets is brought to test by high voltage AC until flashover voltage levels. The flashover level on insulator surface depends on the volume and the number of the water droplets. The highest flashover voltage is 52.2 kV for the insulator surface without humidity, but the lowest voltage is 43.5 kV for water droplets of 1, 2, 3 and 4 drops (0.5, 1.0, 1.5 and 2.0 ml). Consequently, it leads to use the lower voltage respectively. The deformation of the water drop was oscillated, moved, elongated and broken up in to a several small drops on insulating surface. PD was the result of the flashover phenomena which causes the damage of the insulator. These results lead to protect the insulator surface under humidity effect from flashover phenomena.


2019 ◽  
Vol 8 (4) ◽  
pp. 9487-9492

The outdoor insulator is commonly exposed to environmental pollution. The presence of water like raindrops and dew on the contaminant surface can lead to surface degradation due to leakage current. However, the physical process of this phenomenon is not well understood. Hence, in this study we develop a mathematical model of leakage current on the outdoor insulator surface using the Nernst Planck theory which accounts for the charge transport between the electrodes (negative and positive electrode) and charge generation mechanism. Meanwhile the electric field obeys Poisson’s equation. Method of Lines technique is used to solve the model numerically in which it converts the PDE into a system of ODEs by Finite Difference Approximations. The numerical simulation compares reasonably well with the experimental conduction current. The findings from the simulation shows that the conduction current is affected by the electric field distribution and charge concentration. The rise of the conduction current is due to the distribution of positive ion while the dominancy of electron attachment with neutral molecule and recombination with positive ions has caused a significant reduction of electron and increment of negative ions.


2014 ◽  
Vol 42 (10) ◽  
pp. 2986-2990 ◽  
Author(s):  
Weili Liu ◽  
Yangyang Fu ◽  
Xiaobing Zou ◽  
Peng Wang ◽  
Xinxin Wang

Sign in / Sign up

Export Citation Format

Share Document