alternative current
Recently Published Documents


TOTAL DOCUMENTS

157
(FIVE YEARS 41)

H-INDEX

13
(FIVE YEARS 2)

Author(s):  
Hang Xu ◽  
Bo Wang ◽  
Ji Qi ◽  
Mei Liu ◽  
Fei Teng ◽  
...  

AbstractMotivated by the fast-developing spin dynamics in ferromagnetic/piezoelectric structures, this study attempts to manipulate magnons (spin-wave excitations) by the converse magnetoelectric (ME) coupling. Herein, electric field (E-field) tuning magnetism, especially the surface spin wave, is accomplished in Ni/0.7Pb(Mg1/3}Nb2/3})O3—0.3PbTiO3 (PMN—PT) multiferroic heterostructures. The Kerr signal (directly proportional to magnetization) changes of Ni film are observed when direct current (DC) or alternative current (AC) voltage is applied to PMN—PT substrate, where the signal can be modulated breezily even without extra magnetic field (H-field) in AC-mode measurement. Deserved to be mentioned, a surface spin wave switch of “1” (i.e., “on”) and “0” (i.e., “off”) has been created at room temperature upon applying an E-field. In addition, the magnetic anisotropy of heterostructures has been investigated by E-field-induced ferromagnetic resonance (FMR) shift, and a large 490 Oe shift of FMR is determined at the angle of 45° between H-field and heterostructure plane.


2022 ◽  
Author(s):  
Tracey Ziev ◽  
Erfan Rasouli ◽  
Ines Noelly-Tano ◽  
Ziheng Wu ◽  
Srujana Yarasi Rao ◽  
...  

Developing low cost, high efficiency heat exchangers (HX) for application in concentrated solar power (CSP) is critical to reducing CSP costs. However, the extreme operating conditions in CSP systems present a challenge for typical high efficiency HX manufacturing processes. We describe a process-based cost model (PBCM) to estimate the cost of fabricating an HX for this application using additive manufacturing (AM). The PBCM is designed to assess the effectiveness of different designs, processes choices, and manufacturing innovations to reduce HX cost. We describe HX design and AM process modifications that reduce HX cost from a baseline of$780/kW-thto$570/kW-th. We further evaluate the impact of alternative current and potential future technologies on HX cost, and identify a pathway to further reduce HX cost to$270/kW-th.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8474
Author(s):  
Mubarak Alotaibi ◽  
Barmak Honarvar Shakibaei Asli ◽  
Muhammad Khan

Non-Invasive Inspection (NII) has become a fundamental tool in modern industrial maintenance strategies. Remote and online inspection features keep operators fully aware of the health of industrial assets whilst saving money, lives, production and the environment. This paper conducted crucial research to identify suitable sensing techniques for machine health diagnosis in an NII manner, mainly to detect machine shaft misalignment and gearbox tooth damage for different types of machines, even those installed in a hostile environment, using literature on several sensing tools and techniques. The researched tools are critically reviewed based on the published literature. However, in the absence of a formal definition of NII in the existing literature, we have categorised NII tools and methods into two distinct categories. Later, we describe the use of these tools as contact-based, such as vibration, alternative current (AC), voltage and flux analysis, and non-contact-based, such as laser, imaging, acoustic, thermographic and radar, under each category in detail. The unaddressed issues and challenges are discussed at the end of the paper. The conclusions suggest that one cannot single out an NII technique or method to perform health diagnostics for every machine efficiently. There are limitations with all of the reviewed tools and methods, but good results possible if the machine operational requirements and maintenance needs are considered. It has been noted that the sensors based on radar principles are particularly effective when monitoring assets, but further comprehensive research is required to explore the full potential of these sensors in the context of the NII of machine health. Hence it was identified that the radar sensing technique has excellent features, although it has not been comprehensively employed in machine health diagnosis.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6975
Author(s):  
Xiaoyuan Song ◽  
Lisheng Zhong ◽  
Jinghui Gao

In this paper, the inhibition effect of an alternative current (AC) electric field on ice crystallization in 0.9 wt % NaCl aqueous solution was confirmed thermodynamically with characterization. An innovative experimental and analytical method, combining differential scanning calorimeter (DSC) measurement with an externally applied electric field was created by implanting microelectrodes in a sample crucible. It was found that the ice crystallization, including pure ice and salty ice, was obviously inhibited after field cooling with an external AC electric field in a frequency range of 100 k–10 MHz, and the crystallization ratio was related to frequency. Compared with non-field cooling, the crystallization ratio of ice crystals was reduced to less than 20% when E = 57.8 kV/m and f = 1 MHz. The dielectric spectrum results show that this inhibition effect of an alternating electric field on ice crystal growth is closely related to the dielectric relaxation process of hydrated ions.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6017
Author(s):  
Wen-Jen Liu ◽  
Yung-Huang Chang ◽  
Yuan-Tsung Chen ◽  
Chun-Yu Chang ◽  
Jian-Xin Lai ◽  
...  

This research explores the behavior of Co40Fe40W10B10 when it is sputtered onto Si(100) substrates with a thickness (tf) ranging from 10 nm to 100 nm, and then altered by an annealing process at temperatures of 200 °C, 250 °C, 300 °C, and 350 °C, respectively. The crystal structure and grain size of Co40Fe40W10B10 films with different thicknesses and annealing temperatures are observed and estimated by an X-ray diffractometer pattern (XRD) and full-width at half maximum (FWHM). The XRD of annealing Co40Fe40W10B10 films at 200 °C exhibited an amorphous status due to insufficient heating drive force. Moreover, the thicknesses and annealing temperatures of body-centered cubic (BCC) CoFe (110) peaks were detected when annealing at 250 °C with thicknesses ranging from 80 nm to 100 nm, annealing at 300 °C with thicknesses ranging from 50 nm to 100 nm, and annealing at 350 °C with thicknesses ranging from 10 nm to 100 nm. The FWHM of CoFe (110) decreased and the grain size increased when the thickness and annealing temperature increased. The CoFe (110) peak revealed magnetocrystalline anisotropy, which was related to strong low-frequency alternative-current magnetic susceptibility (χac) and induced an increasing trend in saturation magnetization (Ms) as the thickness and annealing temperature increased. The contact angles of all Co40Fe40W10B10 films were less than 90°, indicating the hydrophilic nature of Co40Fe40W10B10 films. Furthermore, the surface energy of Co40Fe40W10B10 presented an increased trend as the thickness and annealing temperature increased. According to the results, the optimal conditions are a thickness of 100 nm and an annealing temperature of 350 °C, owing to high χac, large Ms, and strong adhesion; this indicates that annealing Co40Fe40W10B10 at 350 °C and with a thickness of 100 nm exhibits good thermal stability and can become a free or pinned layer in a magnetic tunneling junction (MTJ) application.


2021 ◽  
Author(s):  
Hang Xu ◽  
Bo Wang ◽  
Ji Qi ◽  
Mei Liu ◽  
Fei Teng ◽  
...  

Abstract Motivated by the fast-developing spin dynamics in ferromagnetic/piezoelectric structures, this work attempts to manipulate magnonics (spin dynamics) by the converse magnetoelectric (ME) coupling. Herein, electric field (E-field) tuning magnetism, especially the surface spin wave, is accomplished in Ni/0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT) multiferroic heterostructures. The Kerr signal (∝magnetization) changes of Ni film are observed when direct current (DC) or alternative current (AC) voltage is applied to PMN-PT substrate, where the signal can be modulated breezily even with no extra magnetic field (H-field) is needed in AC-mode measurement. Deserved to be mentioned, an “1” (i.e., “on”) and “0” (i.e., “off”) surface spin wave switch upon applying an E-field is created at room temperature. In addition, the magnetic anisotropy of heterostructures has been investigated by E-field induced ferromagnetic resonance (FMR) shift, and a large 490 Oe shift of FMR is determined at the angle of 45° between H-field and heterostructure plane.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3017
Author(s):  
Wen-Jen Liu ◽  
Yung-Huang Chang ◽  
Yuan-Tsung Chen ◽  
Tian-Yi Jhou ◽  
Ying-Hsuan Chen ◽  
...  

Co40Fe40W20 monolayers of different thicknesses were deposited on Si(100) substrates by DC magnetron sputtering, with Co40Fe40W20 thicknesses from 10 to 50 nm. Co40Fe40W20 thin films were annealed at three conditions (as-deposited, 250 °C, and 350 °C) for 1 h. The structural and magnetic properties were then examined by X-ray diffraction (XRD), low-frequency alternative-current magnetic susceptibility (χac), and an alternating-gradient magnetometer (AGM). The XRD results showed that the CoFe (110) peak was located at 2θ = 44.6°, but the metal oxide peaks appeared at 2θ = 38.3, 47.6, 54.5, and 56.3°, corresponding to Fe2O3 (320), WO3 (002), Co2O3 (422), and Co2O3 (511), respectively. The saturation magnetization (Ms) was calculated from the slope of the magnetization (M) versus the CoFeW thickness. The Ms values calculated in this manner were 648, 876, 874, and 801 emu/cm3 at the as-deposited condition and post-annealing conditions at 250, 350, and 400 °C, respectively. The maximum MS was about 874 emu/cm3 at a thickness of 50 nm following annealing at 350 °C. It indicated that the MS and the χac values rose as the CoFeW thin films’ thickness increased. Owing to the thermal disturbance, the MS and χac values of CoFeW thin films after annealing at 350 °C were comparatively higher than at other annealing temperatures. More importantly, the Co40Fe40W20 films exhibited a good thermal stability. Therefore, replacing the magnetic layer with a CoFeW film improves thermal stability and is beneficial for electrode and strain gauge applications.


ELKHA ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 41
Author(s):  
M Kevin Rambang Alam ◽  
Helmi Fitriawan ◽  
F.X Arinto Setyawan ◽  
Umi Murdika

Cooler is an electronic device used to cool food and drinks. The current cooling system still uses refrigerants that can damage the ozone layer. The thermoelectric based cooling system can be used as an alternative since it produces sufficient temperature difference on both sides by considering its advantages that is more environmentally friendly. This research is aimed to design and built a cooling and heating system using a thermoelectric Peltier TEC 12715 based on microcontroller Arduino uno. This system uses the Peltier thermoelectric effects as coolant and warmer because it produces temperature difference on both sides. Based on this research, in the no load condition the system can produce a cold temperature of 21,3 ℃ and a hot temperature of 80,2 ℃ in the 40th minute of use. When given a load of 300 ml and 220 ml drink bottles, the system can produce a cold temperature of 22,2 ℃ and a hot temperature of 70,7 ℃ in the 40th minute of use. The TEC 12715 Peltier component used in this research produces the optimal temperature if a voltage of 12 volts and a current of 15 amperes are applied to each Peltier component. The designed system is able to operate repeatedly, properly, and continuously since it is directly connected to alternative current power which is common in households.


Sign in / Sign up

Export Citation Format

Share Document