Stabilization of Microstructures in Mg-Based Alloys: Modeling and Processing

2010 ◽  
Vol 95 ◽  
pp. 51-54
Author(s):  
A. Katsman ◽  
Menachem Bamberger

Extensive research work was devoted to Mg-based alloys strengthened by precipitation hardening. In this framework, the Mg-Zn-Sn system was considered a promising candidate for a creep resistant Mg-alloy. Small additions of alloying elements forming high temperature phases (HTP) were used to improve the structural stability of the Mg-Zn-Sn alloy. Phase formation during solidification was analyzed using thermodynamic calculations. The influence of HTP-particles on stabilization of sub-grain boundary structure was found to be of great importance in improving structural stability of the alloys at elevated temperatures. Mechanisms of precipitation hardening were investigated using the modified Langer-Schwartz model calibrated for Mg-Zn-Sn alloys.

2004 ◽  
Vol 818 ◽  
Author(s):  
R. O. Ritchie ◽  
X.-F. Zhang ◽  
L. C. De Jonghe

AbstractThrough control of the grain-boundary structure, principally in the nature of the nanoscale intergranular films, a silicon carbide with a fracture toughness as high as 9.1 MPa.m1/2 has been developed by hot pressing β-SiC powder with aluminum, boron, and carbon additions (ABC-SiC). Central in this material development has been systematic transmission electron microscopy (TEM) and mechanical characterizations. In particular, atomic-resolution electron microscopy and nanoprobe composition quantification were combined in analyzing grain boundary structure and nanoscale structural features. Elongated SiC grains with 1 nm-wide amorphous intergranular films were believed to be responsible for the in situ toughening of this material, specifically by mechanisms of crack deflection and grain bridging. Two methods were found to be effective in modifying microstructure and optimizing mechanical performance. First, prescribed post-annealing treatments at temperatures between 1100 and 1500°C were seen to cause full crystallization of the amorphous intergranular films and to introduce uniformly dispersed nanoprecipitates within SiC matrix grains; in addition, lattice diffusion of aluminum at elevated temperatures was seen to alter grain-boundary composition. Second, adjusting the nominal content of sintering additives was also observed to change the grain morphology, the grain-boundary structure, and the phase composition of the ABC-SiC. In this regard, the roles of individual additives in developing boundary microstructures were identified; this was demonstrated to be critical in optimizing the mechanical properties, including fracture toughness and fatigue resistance at ambient and elevated temperatures, flexural strength, wear resistance, and creep resistance.


Author(s):  
P. Humble

There has been sustained interest over the last few years into both the intrinsic (primary and secondary) structure of grain boundaries and the extrinsic structure e.g. the interaction of matrix dislocations with the boundary. Most of the investigations carried out by electron microscopy have involved only the use of information contained in the transmitted image (bright field, dark field, weak beam etc.). Whilst these imaging modes are appropriate to the cases of relatively coarse intrinsic or extrinsic grain boundary dislocation structures, it is apparent that in principle (and indeed in practice, e.g. (1)-(3)) the diffraction patterns from the boundary can give extra independent information about the fine scale periodic intrinsic structure of the boundary.In this paper I shall describe one investigation into each type of structure using the appropriate method of obtaining the necessary information which has been carried out recently at Tribophysics.


Author(s):  
Brian Ralph ◽  
Barlow Claire ◽  
Nicola Ecob

This brief review seeks to summarize some of the main property changes which may be induced by altering the grain structure of materials. Where appropriate an interpretation is given of these changes in terms of current theories of grain boundary structure, and some examples from current studies are presented at the end of this paper.


1975 ◽  
Vol 36 (C4) ◽  
pp. C4-17-C4-22 ◽  
Author(s):  
R. W. BALLUFFI ◽  
P. J. GOODHEW ◽  
T. Y. TAN ◽  
W. R. WAGNER

Sign in / Sign up

Export Citation Format

Share Document