Experimental Study on Stirring Wind-Heating Devices

2014 ◽  
Vol 953-954 ◽  
pp. 419-423
Author(s):  
Jian Zhu Zhao ◽  
Qing Miao Liu ◽  
Feng Chen Wang ◽  
Mei Yuan ◽  
Shao Jiong Huang

To improve the using efficiency of clean energy, in this investigation, three wind-heating devices, nonlayered-stirring heating device, layered-stirring heating device and layered extruded stirring heating device, were designed, fabricated and tested. The performance of these three devices was investigated experimentally. Results show that, under the experimental conditions, the layered extruded stirring heating device is the most efficient, and its heating efficiency reaches 46.4%. Then, the computational fluid dynamics (CFD) models were established base on these three devices. The comparative analysis of the simulation and experimental results, both obtained consistent heating law. This suggests that the use of the software CFD simulating the stirring heating device is feasible.

2021 ◽  
Vol 2059 (1) ◽  
pp. 012003
Author(s):  
A Burmistrov ◽  
A Raykov ◽  
S Salikeev ◽  
E Kapustin

Abstract Numerical mathematical models of non-contact oil free scroll, Roots and screw vacuum pumps are developed. Modelling was carried out with the help of software CFD ANSYS-CFX and program TwinMesh for dynamic meshing. Pumping characteristics of non-contact pumps in viscous flow with the help of SST-turbulence model were calculated for varying rotors profiles, clearances, and rotating speeds. Comparison with experimental data verified adequacy of developed CFD models.


Author(s):  
Jian-Xun Wang ◽  
Christopher J. Roy ◽  
Heng Xiao

Proper quantification and propagation of uncertainties in computational simulations are of critical importance. This issue is especially challenging for computational fluid dynamics (CFD) applications. A particular obstacle for uncertainty quantifications in CFD problems is the large model discrepancies associated with the CFD models used for uncertainty propagation. Neglecting or improperly representing the model discrepancies leads to inaccurate and distorted uncertainty distribution for the quantities of interest (QoI). High-fidelity models, being accurate yet expensive, can accommodate only a small ensemble of simulations and thus lead to large interpolation errors and/or sampling errors; low-fidelity models can propagate a large ensemble, but can introduce large modeling errors. In this work, we propose a multimodel strategy to account for the influences of model discrepancies in uncertainty propagation and to reduce their impact on the predictions. Specifically, we take advantage of CFD models of multiple fidelities to estimate the model discrepancies associated with the lower-fidelity model in the parameter space. A Gaussian process (GP) is adopted to construct the model discrepancy function, and a Bayesian approach is used to infer the discrepancies and corresponding uncertainties in the regions of the parameter space where the high-fidelity simulations are not performed. Several examples of relevance to CFD applications are performed to demonstrate the merits of the proposed strategy. Simulation results suggest that, by combining low- and high-fidelity models, the proposed approach produces better results than what either model can achieve individually.


2015 ◽  
Vol 73 (5) ◽  
pp. 969-982 ◽  
Author(s):  
Edward Wicklein ◽  
Damien J. Batstone ◽  
Joel Ducoste ◽  
Julien Laurent ◽  
Alonso Griborio ◽  
...  

Computational fluid dynamics (CFD) modelling in the wastewater treatment (WWT) field is continuing to grow and be used to solve increasingly complex problems. However, the future of CFD models and their value to the wastewater field are a function of their proper application and knowledge of their limits. As has been established for other types of wastewater modelling (i.e. biokinetic models), it is timely to define a good modelling practice (GMP) for wastewater CFD applications. An International Water Association (IWA) working group has been formed to investigate a variety of issues and challenges related to CFD modelling in water and WWT. This paper summarizes the recommendations for GMP of the IWA working group on CFD. The paper provides an overview of GMP and, though it is written for the wastewater application, is based on general CFD procedures. A forthcoming companion paper to provide specific details on modelling of individual wastewater components forms the next step of the working group.


2012 ◽  
Vol 532-533 ◽  
pp. 431-435
Author(s):  
Chong Zhi Mao ◽  
Qian Jian Guo ◽  
Lei He

Honeycomb ceramic is the key component of the regenerative system. The numerical simulation was performed using FLUENT, a commercial computational fluid dynamics (CFD) code, to compare simulation results to the test data. The regenerative process of a honeycomb ceramic regenerator was simulated under different conditions. Experiments were carried out on honeycomb regenerators that are contained in a methane oxidation reactor. The calculated temperatures of flue gas inlet were compared with the ones measured. The tendency of the temperature is the same as the experiment.


Author(s):  
Jason Smith ◽  
Robert N. Eli

This paper reports on a laboratory experiment conducted more than 30 years ago (Eli, 1974, unpublished), and recent Computational Fluid Dynamics (CFD) investigations, focusing on the properties of a plane tangential jet produced by an apparatus called a “centrifugal nozzle.” The authors believe that the centrifugal nozzle has potential industrial applications in several areas related to fluid mixing and particulate matter suspension in mixing tanks. It is also believed that this experiment, or one similar, may provide data useful for benchmarking CFD models.


Author(s):  
Jorge Aramburu ◽  
Raúl Antón ◽  
Macarena Rodríguez-Fraile ◽  
Bruno Sangro ◽  
José Ignacio Bilbao

AbstractYttrium-90 radioembolization (RE) is a widely used transcatheter intraarterial therapy for patients with unresectable liver cancer. In the last decade, computer simulations of hepatic artery hemodynamics during RE have been performed with the aim of better understanding and improving the therapy. In this review, we introduce the concept of computational fluid dynamics (CFD) modeling with a clinical perspective and we review the CFD models used to study RE from the fluid mechanics point of view. Finally, we show what CFD simulations have taught us about the hemodynamics during RE, the current capabilities of CFD simulations of RE, and we suggest some future perspectives.


2021 ◽  
Author(s):  
Milorad B. Dzodzo

Abstract Validation of Computational Fluid Dynamics (CFD) models for industrial applications is more challenging due to the complex geometry and long duration and complexity of various postulated accident scenarios, resulting in different and wide ranges of length and time scales. Thus, CFD models for industrial applications are restricted to the smaller subdomains and short periods of postulated accident scenarios. Validation is most often based on the comparisons with experimental results obtained with the scaled down test facilities. Thus, the effect of scaling needs to be considered and incorporated in the validation process. During validation, valuable experience is gained related to geometry simplifications, needed mesh size, turbulence and heat transfer modeling, effects of initial and boundary conditions, different fluid thermophysical properties and interaction with other phenomena and processes. Based on the gained experience the validated CFD models are adjusted and used to simulate prototypical domains and conditions. Several examples of validations of CFD models for industrial applications are presented.


Author(s):  
John F. LaDisa ◽  
C. Alberto Figueroa ◽  
Irene E. Vignon-Clementel ◽  
Frandics P. Chan ◽  
Jeffrey A. Feinstein ◽  
...  

Complications associated with abnormalities of the ascending and thoracic aorta are directly influenced by mechanical forces. To understand hemodynamic alterations associated with diseases in this region, however, we must first characterize related indices during normal conditions. Computational fluid dynamics (CFD) models of the ascending and thoracic aorta to date have only provided descriptions of the velocity field using idealized representations of the vasculature, a single patient data set, and outlet boundary conditions that do not replicate physiologic blood flow and pressure. Importantly, the complexity of aortic flow patterns, limited availability of methods for implementing appropriate boundary conditions, and ability to replicate vascular anatomy all contribute to the difficulty of the problem and, likely, the scarcity of more detailed studies.


Sign in / Sign up

Export Citation Format

Share Document