Study on Temperature Influence on Nitrogen Removal Properties in Anammox

2014 ◽  
Vol 955-959 ◽  
pp. 484-487 ◽  
Author(s):  
Yue Mei Han

The nitrogen removal and period tending to be stable of anammox under the temperature 37, 35, 30, 25 and 20 were investigated in a packed-bed anammox biofilm reactor which had already operated stably for 300 days. It was found that the highest NRR(nitrogen removal rate)-75.4% and the shortest variation period of effluent concentration-4h was obtained at 37 °C while the opposite results of the lowest NRR of 48.7% and the longest period of 8h was appeared at 20°C; The inhibition effect at high temperature was investigated: the nitrogen removal rate decreased at the temperature of more than 40°C and drop rapidly to 10% when the temperature increased closed to 60°C. The results of the experiments above showed that the nitrogen removal of anammox can be greatly influent by temperature: from 33 to 37°C was the suitable temperature; the NRR decreases under 30°C and the capable to adapt variation drop with the temperature falling. The NRR decreased under high temperature (more than 40°C) and plenty of anammox died in a short time at 60°C.

2012 ◽  
Vol 23 (5) ◽  
pp. 739-749 ◽  
Author(s):  
Ivar Zekker ◽  
Kristel Kroon ◽  
Ergo Rikmann ◽  
Toomas Tenno ◽  
Martin Tomingas ◽  
...  

2018 ◽  
Vol 78 (9) ◽  
pp. 1843-1851 ◽  
Author(s):  
İ. Çelen-Erdem ◽  
E. S. Kurt ◽  
B. Bozçelik ◽  
B. Çallı

Abstract The sludge digester effluent taken from a full scale municipal wastewater treatment plant (WWTP) in Istanbul, Turkey, was successfully deammonified using a laboratory scale two-stage partial nitritation (PN)/Anammox (A) process and a maximum nitrogen removal rate of 1.02 kg N/m3/d was achieved. In the PN reactor, 56.8 ± 4% of the influent NH4-N was oxidized to NO2-N and the effluent nitrate concentration was kept below 1 mg/L with 0.5–0.7 mg/L of dissolved oxygen and pH of 7.12 ± 12 at 24 ± 4°C. The effluent of the PN reactor was fed to an upflow packed bed Anammox reactor where high removal efficiency was achieved with NO2-N:NH4-N and NO3-N:NH4-N ratios of 1.32 ± 0.19:1 and 0.22 ± 0.10:1, respectively. The results show that NH4-N removal efficiency up to 98.7 ± 2.4% and total nitrogen removal of 87.7 ± 6.5% were achieved.


2013 ◽  
Vol 67 (12) ◽  
pp. 2677-2684 ◽  
Author(s):  
M. Christensson ◽  
S. Ekström ◽  
A. Andersson Chan ◽  
E. Le Vaillant ◽  
R. Lemaire

ANITA™ Mox is a new one-stage deammonification Moving-Bed Biofilm Reactor (MBBR) developed for partial nitrification to nitrite and autotrophic N-removal from N-rich effluents. This deammonification process offers many advantages such as dramatically reduced oxygen requirements, no chemical oxygen demand requirement, lower sludge production, no pre-treatment or requirement of chemicals and thereby being an energy and cost efficient nitrogen removal process. An innovative seeding strategy, the ‘BioFarm concept’, has been developed in order to decrease the start-up time of new ANITA Mox installations. New ANITA Mox installations are started with typically 3–15% of the added carriers being from the ‘BioFarm’, with already established anammox biofilm, the rest being new carriers. The first ANITA Mox plant, started up in 2010 at Sjölunda wastewater treatment plant (WWTP) in Malmö, Sweden, proved this seeding concept, reaching an ammonium removal rate of 1.2 kgN/m3 d and approximately 90% ammonia removal within 4 months from start-up. This first ANITA Mox plant is also the BioFarm used for forthcoming installations. Typical features of this first installation were low energy consumption, 1.5 kW/NH4-N-removed, low N2O emissions, <1% of the reduced nitrogen and a very stable and robust process towards variations in loads and process conditions. The second ANITA Mox plant, started up at Sundets WWTP in Växjö, Sweden, reached full capacity with more than 90% ammonia removal within 2 months from start-up. By applying a nitrogen loading strategy to the reactor that matches the capacity of the seeding carriers, more than 80% nitrogen removal could be obtained throughout the start-up period.


2017 ◽  
Vol 76 (12) ◽  
pp. 3468-3477 ◽  
Author(s):  
Weixing Mi ◽  
Jianqiang Zhao ◽  
Xiaoqian Ding ◽  
Guanghuan Ge ◽  
Rixiang Zhao

Abstract To investigate the characteristics of anaerobic ammonia oxidation for treating low-ammonium wastewater, a continuous-flow completely autotrophic nitrogen removal over nitrite (CANON) biofilm reactor was studied. At a temperature of 32 ± 1 °C and a pH between 7.5 and 8.2, two operational experiments were performed: the first one fixed the hydraulic retention time (HRT) at 10 h and gradually reduced the influent ammonium concentrations from 210 to 50 mg L−1; the second one fixed the influent ammonium concentration at 30 mg L−1 and gradually decreased the HRT from 10 to 3 h. The results revealed that the total nitrogen removal efficiency exceeded 80%, with a corresponding total nitrogen removal rate of 0.26 ± 0.01 kg N m−3 d−1 at the final low ammonium concentration of 30 mg L−1. Small amounts of nitrous oxide (N2O) up to 0.015 ± 0.004 kg m−3 d−1 at the ammonium concentration of 210 mg L−1 were produced in the CANON process and decreased with the decrease in the influent ammonium loads. High-throughput pyrosequencing analysis indicated that the dominant functional bacteria ‘Candidatus Kuenenia’ under high influent ammonium levels were gradually succeeded by Armatimonadetes_gp5 under low influent ammonium levels.


2020 ◽  
Vol 81 (9) ◽  
pp. 2033-2042 ◽  
Author(s):  
Ivelina Dimitrova ◽  
Agnieszka Dabrowska ◽  
Sara Ekström

Abstract Partial nitritation and anaerobic ammonium oxidation (PNA) is a useful process for the treatment of nitrogen-rich centrate from the dewatering of anaerobically digested sludge. A one-stage PNA moving bed biofilm reactor (MBBR) was started up without inoculum at Klagshamn wastewater treatment plant, southern Sweden. The reactor was designed to treat up to 200 kgN d−1, and heated dilution water was used during start-up. The nitrogen removal was >80% after 111 days of operation, and the nitrogen removal rate reached 1.8 gN m−2 d1 at 35 °C. The start-up period of the reactor was comparable to that of inoculated full-scale systems. The operating conditions of the system were found to be important, and online control of the free ammonia concentration played a crucial role. Ex situ batch activity tests were performed to evaluate process performance.


2011 ◽  
Vol 63 (6) ◽  
pp. 1168-1176 ◽  
Author(s):  
M. Zubrowska-Sudol ◽  
J. Yang ◽  
J. Trela ◽  
E. Plaza

In a deammonification process applied in the moving bed biofilm reactor (MBBR) oxygen is a crucial parameter for the process performance and efficiency. The objective of this study was to investigate different aeration strategies, characterised by the ratio between non-aerated and aerated phase times (R) and dissolved oxygen concentrations (DO). The series of batch tests were conducted with variable DO concentrations (2, 3, 4 mg L−1) and R values (0-continuous aeration; 1/3, 1, 3-intermittent aeration) but with the same initial ammonium concentration, volume of the moving bed and temperature. It was found that the impact of DO on deammonification was dependent on the R value. At R=0 and R=1/3, an increase of DO caused a significant increase in nitrogen removal rate, whereas for R=1 and R=3 similar rates of the process were observed irrespectively of the DO. The highest nitrogen removal rate of 3.33 g N m−2 d−1 (efficiency equal to 69.5%) was obtained at R=1/3 and DO=4 mg L−1. Significantly lower nitrogen removal rates (1.17–1.58 g N m−2 d−1) were observed at R=1 and R=3 for each examined DO. It was a consequence reduced aerated phase duration times and lesser amounts of residual nitrite in non-aerated phases as compared to R=1/3.


2020 ◽  
Vol 218 ◽  
pp. 03033
Author(s):  
Yafeng Li ◽  
Jianbo Wu ◽  
Yuemeng Bai ◽  
Ning Feng

In order to improve the efficiency of biological nitrogen removal, the experiment used the luffa cylindrical sponge carrier sequencing batch biofilm reactor to treat domestic sewage, and it studied the temperature on the removal effect of TN in the sewage in the reactor and the changes of various types of nitrogen. The results showed that the TN treatment rate of the luffa cylindrical sponge carrier SBBR reached the peak at 30 °C, the removal rate was 82.25%, indicating that the luffa cylindrical sponge carrier SBBR is very suitable for the removal of nitrogen from domestic sewage.


2007 ◽  
Vol 55 (8-9) ◽  
pp. 19-26 ◽  
Author(s):  
B. Szatkowska ◽  
G. Cema ◽  
E. Plaza ◽  
J. Trela ◽  
B. Hultman

The ability of bacterial cultures to create biofilm brings a possibility to enhance biological wastewater treatment efficiency. Moreover, the ability of Anammox and Nitrosomonas species to grow within the same biofilm layer enabled a one-stage system for nitrogen removal to be designed. Such a system, with Kaldnes rings as carriers for biofilm growth, was tested in a technical pilot plant scale (2.1 m3) at the Himmerfjärden Waste Water Treatment Plant (WWTP) in the Stockholm region. The system was directly supplied with supernatant originating from dewatering of digested sludge containing high ammonium concentrations. Nearly 1-year of operational data showed that during the partial nitritation/Anammox process, alkalinity was utilised parallel to ammonium removal. The process resulted in a small pH drop, and its relationship with conductivity was found. The nitrogen removal rate for the whole period oscillated around 1.5 g N m−2d−1 with a maximum value equal to 1.9 g N m−2d−1. Parallel to the pilot plant experiment, a series of batch tests were run to investigate the influence on removal rates of different dissolved oxygen conditions and addition of nitrite. The highest nitrogen removal rate (5.2 g N m−2d−1) in batch tests was obtained when the Anammox process was stimulated by the addition of nitrite. In the simultaneous partial nitritation and Anammox process, the partial nitritation was the rate-limiting step.


2003 ◽  
Vol 129 (1) ◽  
pp. 43-51 ◽  
Author(s):  
S. L. Ong ◽  
L. Y. Lee ◽  
J. Y. Hu ◽  
W. J. Ng

Sign in / Sign up

Export Citation Format

Share Document