Experience from start-ups of the first ANITA Mox Plants

2013 ◽  
Vol 67 (12) ◽  
pp. 2677-2684 ◽  
Author(s):  
M. Christensson ◽  
S. Ekström ◽  
A. Andersson Chan ◽  
E. Le Vaillant ◽  
R. Lemaire

ANITA™ Mox is a new one-stage deammonification Moving-Bed Biofilm Reactor (MBBR) developed for partial nitrification to nitrite and autotrophic N-removal from N-rich effluents. This deammonification process offers many advantages such as dramatically reduced oxygen requirements, no chemical oxygen demand requirement, lower sludge production, no pre-treatment or requirement of chemicals and thereby being an energy and cost efficient nitrogen removal process. An innovative seeding strategy, the ‘BioFarm concept’, has been developed in order to decrease the start-up time of new ANITA Mox installations. New ANITA Mox installations are started with typically 3–15% of the added carriers being from the ‘BioFarm’, with already established anammox biofilm, the rest being new carriers. The first ANITA Mox plant, started up in 2010 at Sjölunda wastewater treatment plant (WWTP) in Malmö, Sweden, proved this seeding concept, reaching an ammonium removal rate of 1.2 kgN/m3 d and approximately 90% ammonia removal within 4 months from start-up. This first ANITA Mox plant is also the BioFarm used for forthcoming installations. Typical features of this first installation were low energy consumption, 1.5 kW/NH4-N-removed, low N2O emissions, <1% of the reduced nitrogen and a very stable and robust process towards variations in loads and process conditions. The second ANITA Mox plant, started up at Sundets WWTP in Växjö, Sweden, reached full capacity with more than 90% ammonia removal within 2 months from start-up. By applying a nitrogen loading strategy to the reactor that matches the capacity of the seeding carriers, more than 80% nitrogen removal could be obtained throughout the start-up period.

2012 ◽  
Vol 518-523 ◽  
pp. 2391-2398
Author(s):  
Yan He ◽  
Gong Ming Zhou ◽  
Min Sheng Huang ◽  
Min Tong

Three kinds of seeding sludge, i.e. conventional activated sludge, anaerobic granular sludge and the nitrifying activated sludge from the nitritation reactor treating aged leachates were evaluated in batch mode to screen the optimized inoculum for the rapid start-up of ANAMMOX reactor. The feasibility of the ANAMMOX process for the treatment of aged leachates was also investigated in a modified upflow anaerobic sludge blanket (UASB, 0.05m3). The batch experiments revealed that the nitrifying activated sludge from the nitritation reactor could respectively achieve the NRR (nitrogen removal rate) of 0.0365 kg N/(m3.d) and the ARR (ammonium removal rate) of 0.013 kg N/(m3.d) on day 12, which were greatly higher than those of the other two tested sludge samples. The mixture of the aforementioned nitrifying activated sludge and anaerobic granular sludge was established as an effective inoculum for the prompt start-up of ANAMMOX reactor. The maximum total nitrogen removal rate of 0.826 kg N/(m3.d) could be obtained for the treatment of “old” leachates under NLR (nitrogen loading rate) of 1.028 kg N/(m3.d). It is concluded that the N-removal performance of ANAMMOX process is still to be improved for actual engineering application to aged landfill leachates.


2020 ◽  
Vol 81 (9) ◽  
pp. 2033-2042 ◽  
Author(s):  
Ivelina Dimitrova ◽  
Agnieszka Dabrowska ◽  
Sara Ekström

Abstract Partial nitritation and anaerobic ammonium oxidation (PNA) is a useful process for the treatment of nitrogen-rich centrate from the dewatering of anaerobically digested sludge. A one-stage PNA moving bed biofilm reactor (MBBR) was started up without inoculum at Klagshamn wastewater treatment plant, southern Sweden. The reactor was designed to treat up to 200 kgN d−1, and heated dilution water was used during start-up. The nitrogen removal was >80% after 111 days of operation, and the nitrogen removal rate reached 1.8 gN m−2 d1 at 35 °C. The start-up period of the reactor was comparable to that of inoculated full-scale systems. The operating conditions of the system were found to be important, and online control of the free ammonia concentration played a crucial role. Ex situ batch activity tests were performed to evaluate process performance.


2018 ◽  
Vol 78 (9) ◽  
pp. 1843-1851 ◽  
Author(s):  
İ. Çelen-Erdem ◽  
E. S. Kurt ◽  
B. Bozçelik ◽  
B. Çallı

Abstract The sludge digester effluent taken from a full scale municipal wastewater treatment plant (WWTP) in Istanbul, Turkey, was successfully deammonified using a laboratory scale two-stage partial nitritation (PN)/Anammox (A) process and a maximum nitrogen removal rate of 1.02 kg N/m3/d was achieved. In the PN reactor, 56.8 ± 4% of the influent NH4-N was oxidized to NO2-N and the effluent nitrate concentration was kept below 1 mg/L with 0.5–0.7 mg/L of dissolved oxygen and pH of 7.12 ± 12 at 24 ± 4°C. The effluent of the PN reactor was fed to an upflow packed bed Anammox reactor where high removal efficiency was achieved with NO2-N:NH4-N and NO3-N:NH4-N ratios of 1.32 ± 0.19:1 and 0.22 ± 0.10:1, respectively. The results show that NH4-N removal efficiency up to 98.7 ± 2.4% and total nitrogen removal of 87.7 ± 6.5% were achieved.


2007 ◽  
Vol 55 (8-9) ◽  
pp. 59-65 ◽  
Author(s):  
A. Onnis-Hayden ◽  
P.B. Pedros ◽  
J. Reade

An experimental study investigating the nitrogen removal efficiency from the recycle stream generated in the dewatering facility of the anaerobically digested sludge at the Deer Island wastewater treatment plant (WWTP) in Boston was conducted using a single submerged attached growth bioreactor (SAGB), designed for simultaneous nitrification and denitrification. The applied nitrogen loading to the reactor ranged from 0.7 to 2.27 kg-N/m3·d, and the corresponding total nitrogen (TN) removal rate ranged from 0.38 to 1.8 kg-N/m3·d. The observed nitrification rates varied from 0.42 kg-N/m3·d to 1.45 kg-N/m3·d with an ammonia load of 0.5 kg-N/m3·d and 1.8 kg-N/m3·d, respectively. An average nitrification efficiency of 91% was achieved throughout the experiment. Denitrification efficiency varied from 55%, obtained without any addition of carbon source, to 95% when methanol was added in order to obtain a methanol/nitrate ratio of about 3 kg methanol/kg NO3−-N.


2017 ◽  
Author(s):  
S. Suneethi ◽  
Kurian Joseph

Anaerobic Membrane Bioreactor (AnMBR) is an innovative high cell density system having complete biomass retention, high reactor loading and low sludge production and suitable for developing slow growing autotrophic bacterial cultures such as ANAMMOX. The Anaerobic Ammonium Oxidation (ANAMMOX) process is an advanced biological nitrogen removal removes ammonia using nitrite as the electron acceptor without oxygen. The NH4+-N in the landfill leachate that is formed due to the release of nitrogen from municipal solid waste (MSW), when discharged untreated, into the surface water can result in eutrophication, aquatic toxicity and emissions of nitrous oxide (N2O) to atmosphere. Besides, NH4+-N accumulation in landfills poses long term pollution issue with significant interference during post closure thereby requiring its removal prior to ultimate disposal into inland surface waters. The main objective of this study was to investigate the feasibility and treatment efficiency of treating landfill leachate (to check) for removing NH4+-N by adopting ANAMMOX process in AnMBR. The AnMBR was optimized for Nitrogen Loading Rate (NLR) varying from 0.025 to 5 kg NH4+-N/ m3/ d with hydraulic retention time (HRT) ranging from 1 to 3 d. NH4+-N removal efficacy of 85.13 ± 9.67% with the mean nitrogen removal rate (NRR) of 5.54 ± 0.63 kg NH4+-N/ m3/ d was achieved with nitrogen loading rate (NLR) of 6.51 ± 0.20 kg NH4+- N/ m3/ d at 1.5 d HRT. The nitrogen transformation intermediates in the form of hydrazine (N2H4) and hydroxylamine (NH2OH) were 0.008 ± 0.005 mg/L and 0.006 ± 0.001 mg/L, respectively, indicating co-existence of aerobic ammonia oxidizers (AOB) and ANAMMOX. The free ammonia (NH3) and free nitrous acid (HNO2) concentrations were 26.61 ± 16.54 mg/L and (1.66 ± 0.95) x 10-5 mg/L, preventing NO2--N oxidation to NO3--N enabling sustained NH4+- N removal.


Author(s):  
Krishnanand Maillacheruvu ◽  
Derek Hartmann

Nitrogen and phosphorus are two major pollutants that lead to eutrophication, adversely impact ecosystems, and lead to degradation of water quality, which impacts human health and sustainability. Pollution from point sources like wastewater and industry discharge is easier to control than non-point source pollution due to agricultural runoff and related activities. The USEPA is considering more strict standards for nitrogen and phosphorus discharge from point sources. The objective of this study was to use an appropriate low-cost wastewater technology to demonstrate removal of nitrogen from wastewater discharge using rotating biological contactors (RBCs) using different C:N ratios. The first-order nitrogen removal rate constant was found to be about 3.88 day-1 in experimental reactor systems, using RBC media from a local wastewater treatment plant (Greater Peoria Sanitary District). Phase I experiments, at C:N ratio of 2:1, with nitrogen removal rates of 60% in a single flow-through system. Phase II experiments for the limited carbon availability condition showed that the removal rate constant reduced by 30% and N-removal efficiency dropped to around 48%. Modeling showed that even under these conditions, multiple bioreactors operated in series could help achieve design treatment goals. The system achieved stability within a week of operation. Economics and sustainability issues are analyzed to determine if the process developed in this research is scalable to pilot-and full-scale conditions.


2014 ◽  
Vol 9 (2) ◽  
pp. 215-224 ◽  
Author(s):  
Anneli Andersson Chan ◽  
Niklas Johansson ◽  
Magnus Christensson

Many wastewater treatment plants need to improve their nitrogen removal due to stricter requirements and increasing loads. This often means larger bioreactor volumes, which can be very expensive and is sometimes impossible if space is limited. Therefore, there is a need for compact hybrid solutions that can increase capacity within existing volumes. Two full-scale demonstration projects using moving bed biofilm reactor (MBBR) technology has proven to be an efficient way to treat nitrogen in existing volumes at Sundet wastewater treatment plant in Växjö. Increased nitrification and denitrification capacity in parts of the main stream were demonstrated through the Hybas™ process, a combination of MBBR and activated sludge using the integrated fixed-film activated sludge technology. The ANITA™ Mox process, using autotrophic N-removal through anaerobic ammonium oxidation (anammox), provided high nitrogen removal for the sludge liquor. Data collected on-site for over a year are analyzed and compared with the performance of conventional treatment systems. These two full-scale demonstration projects have been a successful learning experience in identifying and correcting both process and operational issues, which may not have arisen at pilot scale. The set objectives in terms of nitrogen removal were met for both processes and design modifications have been identified that will improve future operation at Sundet WWTP.


Author(s):  
Minki Jung ◽  
Taeseok Oh ◽  
Daehwan Rhu ◽  
Jon Liberzon ◽  
S. Joh Kang ◽  
...  

Abstract This paper reports long-term performance of a two-stage AMX® system with a capacity of 70 m3/d treating actual reject water. An air-lift granulation reactor performed partial nitration (PN-AGR) at an average nitrogen loading rate (NLR) of 3.1 kgN/m3-d, producing an average effluent NO2--N/NH4+-N ratio of 1.04. The average nitrogen removal rate (NRR) of the system was 3.91 kgN/m3-d following an Anammox stage moving bed biofilm reactor (A-MBBR). Although the total nitrogen (TN) concentrations in the reject water fluctuated seasonally, overall nitrogen removal efficiency (NRE) of the two-stage AMX® system was very stable at over 87%. The two-stage AMX® system, consisting of a PN-AGR followed by an A-MBBR, operated at a stable NLR of 1.86 kgN/m3-d (1.64 kgN/m3-d including the intermediate tank), which is 1.8 times higher (1.6 times including the intermediate tank) than other commercialized single-stage partial nitritation/Anammox (PN/A) processes (which operate at a NLR of about 1 kgN/m3-d). The PN-AGR was affected by high influent total suspended solids (TSS) loads, but was able to recover within a short period of 4 days, which confirmed that the two-stage PN/A process is resilient to TSS load fluctuations.


2020 ◽  
Vol 21 (2) ◽  
pp. 138-146
Author(s):  
Randi Permana Putra ◽  
Zulkarnaini Zulkarnaini ◽  
Puti Sri Komala

ABSTRACTThe anammox process plays an essential role in removing nitrogen from the waters anaerobically. Since the discovery of anammox in 1995, no studies have reported anammox bacteria from the Indonesian environment. This research aims to begin exploring anammox bacteria from the environment in Indonesia as a tropical country. The exploration was carried out with a start-up anammox process in a continuous reactor. The reactor was constructed using a housing filter equipped with a string wound filter as a supporting media for biofilm. Sludge from Koto Baru Lake, Tanah Datar, Indonesia, was used as inoculum. The substrate was fed into the reactor through the inside of the filter using a peristaltic pump. Ammonium and nitrite were supplemented to the substrate at a 70-150 mg-N/L concentration and operated at room temperature. The samples were collected once a week. Ammonium and nitrite were measured using the colorimetric method, nitrate using the ultraviolet spectrophotometric method. Performance of nitrogen removal and the growth biofilm in the reactor shown the success of the start of the anammox process. After 140 days of reactor operation, the maximum value of nitrogen removal rate (NRR) was 0.271 kg-N/m3.day at the nitrogen loading rate (NLR) 0.3095 kg-N/m3.day. Ammonium conversion efficiency (ACE) and nitrogen removal efficiency (NRE) during start-up were 97.07% and 91.92%. Red biofilm growth on the filter and the reactor's inner wall, which is characteristic of the anammox bacteria biomass.Keywords: anammox, Indonesia, Koto Baru Lake, tropical   ABSTRAKProses anammox memiliki peran penting dalam penyisihan nitrogen dari perairan secara anaerobik. Sejak ditemukannya anammox pada 1995, belum ada penelitian yang melaporkan keberadaan bakteri anammox dari lingkungan Indonesia. Tujuan dari penelitian ini adalah untuk memulai eksplorasi bakteri anammox dari lingkungan di Indonesia sebagai negara tropis. Eksplorasi dilakukan dengan start-up proses anammox pada sebuah reaktor kontinu. Reaktor terdiri dari housing filter yang dilengkapi dengan string wound filter sebagai media lekat untuk biofilm. Lumpur dari Telaga Koto Baru digunakan sebagai inokulum. Substrat dialirkan ke dalam reaktor melalui bagian dalam filter menggunakan pompa peristaltik. Amonium dan nitrit ditambahkan ke substrat dengan konsentrasi 70-150 mg-N/L dan dioperasikan pada suhu kamar. Konsentrasi amonium dan nitrit diukur dengan metode kolorimetri, serta konsentrasi nitrat dianalisis menggunakan metode spektrofotometri UV dengan interval pengukuran sampel setiap 5 hari. Pengamatan penyisihan nitrogen dan pertumbuhan biofilm di reaktor menunjukkan keberhasilan dimulainya proses anammox. Setelah 140 hari operasional reaktor, didapatkan nilai tingkat penyisihan nitrogen  (TPyN) maksimum 0,271 kg-N/m3.hari pada tingkat pemuatan nitrogen (TPN) 0,3095 kg-N/m3.hari. Nilai efisiensi konversi amonium (EKA) dan efisiensi penyisihan nitrogen (EPN) maksimum selama start-up adalah : 97,07% dan 91,92%. Biofilm berwarna merah tumbuh pada filter dan dinding bagian dalam reaktor yang merupakan karakteristik dari biomasa bakteri anammox.Kata kunci: anammox, Indonesia, Telaga Koto Baru, tropis


2016 ◽  
Vol 1 (2) ◽  
pp. 18 ◽  
Author(s):  
Hong Liang ◽  
Shutong Liu ◽  
Xue Li ◽  
Xueying Sun ◽  
Dawen Gao

An external circulation Sequencing Batch Reactor (ecSBR) was used to study the efficiency of nitrogen removal by autotrophic microbe. With gradually reducing the dissolved oxygen (DO) concentration from 1.2 mg/L to 0.04 mg/L, the single-stage autotrophic biological nitrogen removal (sABNR) process could be operated stably. After removing the aeration, the process could still stay sABNR stably, and the concentration of NH4+-N was 0.9 mg/L in effluent, the rate of nitrate (produced)/NH4+-N (removed) was in the range of 0.12–0.40. The results showed that the concentration of NH4+-N in effluent was 0.8, 0.8 and 9.9 mg/L with the hydraulic retention time (HRT) at 8 h, 6 h and 4 h respectively, the removal efficiency of ammonia were 98.2%, 98.1% and 73.6% respectively. The rate of nitrate (produced)/NH4+-N (consumed) was 0.05 at HRT 6 h, and the nitrogen loading rate (NLR) and nitrogen removal rate (NRR) were 169.7 and 129.7 g/m3/d, the removal efficiency of total nitrogen (TN) was 77.5%. In conclusion the optimal HRT was 6 h instead of 8 h or 4 h enough for ammonia removal without causing energy wastage. 


Sign in / Sign up

Export Citation Format

Share Document