scholarly journals Treatment performance, nitrous oxide production and microbial community under low-ammonium wastewater in a CANON process

2017 ◽  
Vol 76 (12) ◽  
pp. 3468-3477 ◽  
Author(s):  
Weixing Mi ◽  
Jianqiang Zhao ◽  
Xiaoqian Ding ◽  
Guanghuan Ge ◽  
Rixiang Zhao

Abstract To investigate the characteristics of anaerobic ammonia oxidation for treating low-ammonium wastewater, a continuous-flow completely autotrophic nitrogen removal over nitrite (CANON) biofilm reactor was studied. At a temperature of 32 ± 1 °C and a pH between 7.5 and 8.2, two operational experiments were performed: the first one fixed the hydraulic retention time (HRT) at 10 h and gradually reduced the influent ammonium concentrations from 210 to 50 mg L−1; the second one fixed the influent ammonium concentration at 30 mg L−1 and gradually decreased the HRT from 10 to 3 h. The results revealed that the total nitrogen removal efficiency exceeded 80%, with a corresponding total nitrogen removal rate of 0.26 ± 0.01 kg N m−3 d−1 at the final low ammonium concentration of 30 mg L−1. Small amounts of nitrous oxide (N2O) up to 0.015 ± 0.004 kg m−3 d−1 at the ammonium concentration of 210 mg L−1 were produced in the CANON process and decreased with the decrease in the influent ammonium loads. High-throughput pyrosequencing analysis indicated that the dominant functional bacteria ‘Candidatus Kuenenia’ under high influent ammonium levels were gradually succeeded by Armatimonadetes_gp5 under low influent ammonium levels.

2017 ◽  
Vol 77 (6) ◽  
pp. 1483-1492 ◽  
Author(s):  
Yue-mei Han ◽  
Feng-xia Liu ◽  
Xiao-fei Xu ◽  
Zhuo Yan ◽  
Zhi-jun Liu

Abstract This study developed a partial nitrification (PN) and anaerobic ammonia oxidation (Anammox) process for treating high-ammonia wastewater using an innovative biofilm system in which ammonia oxidizing bacteria grew on fluidized Kaldnes (K1) carriers and Anammox bacteria grew on fixed acryl resin carriers. The airlift loop biofilm reactor (ALBR) was stably operated for more than 4 months under the following conditions: 35 ± 2 °C, pH 7.5–8.0 and dissolved oxygen (DO) of 0.5–3.5 mg/L. The results showed that the total nitrogen removal efficiency reached a maximum of 75% and the total nitrogen removal loading rate was above 0.4 kg/(d·m3). DO was the most efficient control parameter in the mixed biofilm system, and values below 1.5 mg/L were observed in the riser zone for the PN reaction, while values below 0.8 mg/L were observed in the downer zone for the Anammox reaction. Scanning electron microscopy and Fluorescence In Situ Hybridization images showed that most of the nitrifying bacteria were distributed on the K1 carriers and most of the Anammox bacteria were distributed within the acryl resin carriers. Therefore, the results indicate that the proposed combined biofilm system is easy to operate and efficient for the treatment of high-ammonia wastewater.


Author(s):  
Qing Cai ◽  
Qiang He ◽  
Sheng Zhang ◽  
Jiajia Ding

Abstract Based on the simplified activated sludge model No. 1 (ASM1), a 1D biofilm model containing autotrophic microorganisms and heterotrophic microorganisms was developed to describe the microbial population dynamics and reactor dynamics of CANON SBR. After sensitivity analysis and calibration for parameters, the simulation results of NH4+-N concentration and NO2−-N concentration were consistent with the measured results, while the simulated NO3−-N concentration was slightly lower than the measured. The simulation results showed that the soluble microbial products had an extremely low concentration. The aerobic ammonia oxidation bacteria and anaerobic ammonia oxidation bacteria were the dominant microbial populations of the CANON system, while nitrite oxidization bacteria and heterotrophic bacteria were eliminated completely. The optimal ratio of air aeration load to influent NH4+-N load was about 0.18 L air/mgN. The operation condition of the reactor was optimized according to the simulation results, and the total nitrogen removal rate and the total nitrogen removal efficiency increased from 0.312 ± 0.015 to 0.485 ± 0.013 kg N/m3/d and from 71.2 ± 4.3 to 85.7 ± 1.4%, respectively.


2007 ◽  
Vol 55 (8-9) ◽  
pp. 59-65 ◽  
Author(s):  
A. Onnis-Hayden ◽  
P.B. Pedros ◽  
J. Reade

An experimental study investigating the nitrogen removal efficiency from the recycle stream generated in the dewatering facility of the anaerobically digested sludge at the Deer Island wastewater treatment plant (WWTP) in Boston was conducted using a single submerged attached growth bioreactor (SAGB), designed for simultaneous nitrification and denitrification. The applied nitrogen loading to the reactor ranged from 0.7 to 2.27 kg-N/m3·d, and the corresponding total nitrogen (TN) removal rate ranged from 0.38 to 1.8 kg-N/m3·d. The observed nitrification rates varied from 0.42 kg-N/m3·d to 1.45 kg-N/m3·d with an ammonia load of 0.5 kg-N/m3·d and 1.8 kg-N/m3·d, respectively. An average nitrification efficiency of 91% was achieved throughout the experiment. Denitrification efficiency varied from 55%, obtained without any addition of carbon source, to 95% when methanol was added in order to obtain a methanol/nitrate ratio of about 3 kg methanol/kg NO3−-N.


2004 ◽  
Vol 49 (11-12) ◽  
pp. 83-90 ◽  
Author(s):  
X.-D. Hao ◽  
M.C.M. van Loosdrecht

A model evaluating COD influence on a partial nitrification-Anammox biofilm process is integrated on the basis of heterotrophic growth as described in ASM3, combined with a previously published model for the CANON process. This integrated model can simulate the activities of heterotrophs and autotrophs involved in a biofilm, and interactions between COD oxidation, denitrification, nitrification and Anammox can be evaluated. Simulations indicate that COD in the influent has no important influence on the trends in the partial nitrification-Anammox biofilm process. Besides full COD removal, a total nitrogen removal efficiency of about 90% can be expected for stable biofilm systems. Furthermore, Anammox is a major contributor to the total nitrogen removal in stable biofilm systems and conventional denitrification only takes a share of <20% in the total nitrogen removal.


2015 ◽  
Vol 73 (3) ◽  
pp. 535-542 ◽  
Author(s):  
Yangfan Deng ◽  
Xiaoling Zhang ◽  
Ying Miao ◽  
Bo Hu

In this study, a laboratory-scale sequencing biofilm batch reactor (SBBR) was employed to explore a fast start-up of completely autotrophic nitrogen removal over nitrite (CANON) process. Partial nitrification was achieved by controlling free ammonia concentration and operating at above 30 °C; then the reactor was immediately operated with alternating periods of aerobiosis and anaerobiosis to start the anammox process. The CANON process was successfully achieved in less than 50 d, and the total-nitrogen removal efficiency and the nitrogen removal rate were 81% and 0.14 kg-N m−3 d−1 respectively. Afterwards, with the increasing of ammonium loading rate a maximum nitrogen removal rate of 0.39 kg-N m−3 d−1 was achieved on day 94. DNA analysis showed that ‘Candidatus Brocadia’ was the dominant anammox species and Nitrosomonas was the dominant aerobic ammonium-oxidizing bacteria in the CANON reactor. This study revealed that due to shortening the persistent and stable nitrite accumulation period the long start-up time of the CANON process can be significantly reduced.


2000 ◽  
Vol 42 (12) ◽  
pp. 137-147 ◽  
Author(s):  
C.F. Ouyang ◽  
R.J. Chiou ◽  
C.T. Lin

Previous research has shown that nitrogen from municipal wastewater could be eliminated by a biofilter system. In this study a system of combined pre-denitrification/nitrification biofilters was set up. It is to investigate the effect of the hydraulic loading and recycled ratio on nitrogen removal. The characteristics of bacterial activity at different heights is discussed. The experiment shows that longer hydraulic loading would result in better total nitrogen removal. Total nitrogen removal might be not dependent on denitrification but nitrification. Hydraulic loading that affects nitrification might be due to the diffusion of NH3–N from the bulk solution to the inner biofilm. The recycling NO3–N could be completely eliminated in the anoxic biofilter. The operation with longer retention time (HRT of 12 hours) would result in inner denitrification in the aerobic biofilter. Biological activity could be determined by the distribution of bacteria. The specific rates of pollutant decomposition depend on biological activity and effective biological VSS. The effect of the recycled ratio on the nitrogen removal is significant. Total nitrogen removal rate and nitrogen type of effluent would be determined by recycle ratio. The operation at low recycled ratio would result in worse total nitrogen removal, but the NH3–N of effluent would be lower. The operation in higher recycle ratio would be opposite to low recycle ratio.


2021 ◽  
pp. 100817
Author(s):  
Withanage Buddhima Sharmane Siriweera ◽  
Lee Yun-Je ◽  
Kobayashi Masumi ◽  
Chettiyappan Visvanathan

2020 ◽  
Vol 81 (1) ◽  
pp. 138-147
Author(s):  
Xiaoling Zhang ◽  
Xincong Liu ◽  
Meng Zhang

Abstract In this study, the effects of elevated chemical oxygen demand/nitrogen (COD/N) ratios on nitrogen removal, production and composition of the extracellular polymer substances (EPS) and microbial community of a completely autotrophic nitrogen removal via nitrite (CANON) process were studied in a sequencing batch membrane bioreactor (SBMBR). The whole experiment was divided into two stages: the CANON stage (without organic matter in influent) and the simultaneous partial nitrification, anaerobic ammonia oxidation and denitrification (SNAD) stage (with organic matter in influent). When the inflow ammonia nitrogen was 420 mg/L and the COD/N ratio was no higher than 0.8, the addition of COD was helpful to the CANON process; the total nitrogen removal efficiency (TNE) was improved from approximately 65% to more than 75%, and the nitrogen removal rate (NRR) was improved from approximately 0.255 kgN/(m3·d) to approximately 0.278 kgN/(m3•d), while the TNE decreased to 60%, and the NRR decreased to 0.236 kgN/(m3•d) when the COD/N ratio was elevated to 1.0. For the EPS, the amounts of soluble EPS (SEPS) and loosely bound EPS (LB-EPS) were both higher in the CANON stage than in the SNAD stage, while the amount of tightly bound EPS (TB-EPS) in the SNAD stage was significantly higher due to the proliferation of heterotrophic bacteria. The metagenome sequencing technique was used to analyse the microbial community in the SBMBR. The results showed that the addition of COD altered the structure of the bacterial community in the SBMBR. The amounts of Candidatus ‘Anammoxoglobus’ of anaerobic ammonia oxidation bacteria (AAOB) and Nitrosomonas of ammonia oxidizing bacteria (AOB) both decreased significantly, and Nitrospira of nitrite oxidizing bacteria (NOB) was always in the reactor, although the amount changed slightly. A proliferation of denitrifiers related to the genera of Thauera, Dokdonella and Azospira was found in the SBMBR.


2011 ◽  
Vol 63 (6) ◽  
pp. 1168-1176 ◽  
Author(s):  
M. Zubrowska-Sudol ◽  
J. Yang ◽  
J. Trela ◽  
E. Plaza

In a deammonification process applied in the moving bed biofilm reactor (MBBR) oxygen is a crucial parameter for the process performance and efficiency. The objective of this study was to investigate different aeration strategies, characterised by the ratio between non-aerated and aerated phase times (R) and dissolved oxygen concentrations (DO). The series of batch tests were conducted with variable DO concentrations (2, 3, 4 mg L−1) and R values (0-continuous aeration; 1/3, 1, 3-intermittent aeration) but with the same initial ammonium concentration, volume of the moving bed and temperature. It was found that the impact of DO on deammonification was dependent on the R value. At R=0 and R=1/3, an increase of DO caused a significant increase in nitrogen removal rate, whereas for R=1 and R=3 similar rates of the process were observed irrespectively of the DO. The highest nitrogen removal rate of 3.33 g N m−2 d−1 (efficiency equal to 69.5%) was obtained at R=1/3 and DO=4 mg L−1. Significantly lower nitrogen removal rates (1.17–1.58 g N m−2 d−1) were observed at R=1 and R=3 for each examined DO. It was a consequence reduced aerated phase duration times and lesser amounts of residual nitrite in non-aerated phases as compared to R=1/3.


2021 ◽  
Author(s):  
Sadaf mehrabi ◽  
Dwight Houweling ◽  
Martha Dagnew

Abstract High energy costs, organic carbon availability, and space limitation are some of the barriers faced by wastewater treatment processes. This research investigates the impact of membrane aeration mode, scouring intensity, and loading rate in a single-stage total nitrogen removal process in a membrane aerated biofilm reactor (MABR). Under ammonia loading of 2.7 g N/m2.d, continuous process aeration led to 1.7 g NH4-N/m2.d and 0.8 g TN/m2.d removal, respectively. Conversely, intermittent (5/12 min on/off) aeration resulted in 35% less ammonia removal but 34% higher total nitrogen (TN) removal. The MABR under ammonia load of 1.6 g N/m2.d showed an enhanced effluent quality with an average of 2.5 mg/L effluent ammonia concentration. This finding highlights the nitrification potential of a flow-through MABR as a standalone treatment step without any downstream process. Also, slough-off, a common issue in the biofilm process and was hypothesized to reduce the removal efficiency, showed increased ammonia removal rates by 20%. The microbial analysis indicated the dominant AOB and NOB species as Nitrosomonas spp. and Nitrospira spp, respectively. Moreover, the relative abundance of denitrifying bacteria (40.5%) were found twice in intermittently-aerated MABR compared to the continuously-aerated one (20.5%). However, NOB and denitrifying bacteria relative abundances were comparable where continuous air was supplied.


Sign in / Sign up

Export Citation Format

Share Document