Simulation of Failure in the Refractory Lining of Coke Dry Quenching

2010 ◽  
Vol 97-101 ◽  
pp. 2828-2831 ◽  
Author(s):  
Xia Chen ◽  
Qing Ming Chang

A model based on damaged mechanics is presented to analyze the failure behaviour of coke dry quenching refractory lining under circumstance of multifarious change of temperature by using finite element method. The refractory material behavior can be described by Drucker-Prager Plasticity model for compression and strain softening under tension. The simulation result is consistent with the experiment result. This paper provides a new method for the failure analysis of refractory material. The results can be used to optimize the lining design and the material selection.

2003 ◽  
Vol 125 (3) ◽  
pp. 363-371 ◽  
Author(s):  
Padmanabhan Seshaiyer ◽  
Jay D. Humphrey

Quantification of the mechanical behavior of hyperelastic membranes in their service configuration, particularly biological tissues, is often challenging because of the complicated geometry, material heterogeneity, and nonlinear behavior under finite strains. Parameter estimation thus requires sophisticated techniques like the inverse finite element method. These techniques can also become difficult to apply, however, if the domain and boundary conditions are complex (e.g. a non-axisymmetric aneurysm). Quantification can alternatively be achieved by applying the inverse finite element method over sub-domains rather than the entire domain. The advantage of this technique, which is consistent with standard experimental practice, is that one can assume homogeneity of the material behavior as well as of the local stress and strain fields. In this paper, we develop a sub-domain inverse finite element method for characterizing the material properties of inflated hyperelastic membranes, including soft tissues. We illustrate the performance of this method for three different classes of materials: neo-Hookean, Mooney Rivlin, and Fung-exponential.


2008 ◽  
Vol 46 (7-9) ◽  
pp. 898-904 ◽  
Author(s):  
Tomonori Kaneko ◽  
Sadayuki Ujihashi ◽  
Hidetoshi Yomoda ◽  
Shusuke Inagi

2020 ◽  
Vol 142 (12) ◽  
Author(s):  
Mohammad Salem ◽  
Lindsey Westover ◽  
Samer Adeeb ◽  
Kajsa Duke

Abstract To simulate the mechanical and fracture behaviors of cancellous bone in three anatomical directions and to develop an equivalent constitutive model. Microscale extended finite element method (XFEM) models of a cancellous specimen were developed with mechanical behaviors in three anatomical directions. An appropriate abaqus macroscale model replicated the behavior observed in the microscale models. The parameters were defined based on the intermediate bone material properties in the anatomical directions and assigned to an equivalent nonporous specimen of the same size. The equivalent model capability was analyzed by comparing the micro- and macromodels. The hysteresis graphs of the microscale model show that the modulus is the same in loading and unloading; similar to the metal plasticity models. The strength and failure strains in each anatomical direction are higher in compression than in tension. The microscale models exhibited an orthotropic behavior. Appropriate parameters of the cast iron plasticity model were chosen to generate macroscale models that are capable of replicating the observed microscale behavior of cancellous bone. Cancellous bone is an orthotropic material that can be simulated using a cast iron plasticity model. This model is capable of replicating the microscale behavior in finite element (FE) analysis simulations without the need for individual trabecula, leading to a reduction in computational resources without sacrificing model accuracy. Also, XFEM of cancellous bone compared to traditional finite element method proves to be a valuable tool to predict and model the fractures in the bone specimen.


2020 ◽  
Vol 1000 ◽  
pp. 82-89
Author(s):  
Dhyah Annur ◽  
Muhammad S. Utomo ◽  
Talitha Asmaria ◽  
Daniel P. Malau ◽  
Sugeng Supriadi ◽  
...  

Osteosarcoma, as the most frequent bone tumor cases, can be found in the pelvis bone. Within the pelvis, the ilium is the most common location for osteosarcoma, followed by the acetabulum and then the ischium. Surgery of pelvis is difficult and the reconstruction is complicated mainly due to the geometry complexity and also the weight support function of the pelvis. Endoprosthesis of the ilium is therefore designed to increase the quality of life of the patient. In this study, the iliac implant is designed based on the natural geometry of the ilium, and the size is modified to fit the morphometry of the Eastern Asian. A finite element method (FEM) is proposed as a basic study in material selection. Titanium and its alloy (Ti-6Al-4V) are studied as the potential candidate for the proposed implant while the finite analysis of the bone was also included. As a preliminary study, in this FEM, only the static load is given, each material is assumed to be isotropic and the contacts were considered bonded. FEM in this study is expected to give a better understanding of the stress distribution, and to optimize the selection of materials.


Sign in / Sign up

Export Citation Format

Share Document