Compressive Properties of Solid and Porous Parts Made from High Strength Steel Alloys by Direct Metal Deposition

2014 ◽  
Vol 974 ◽  
pp. 141-146
Author(s):  
Syed H. Riza ◽  
S.H. Masood ◽  
Cui E Wen

The potential of laser assisted Direct Metal Deposition (DMD) process, for creating structures from high strength steel alloys that can be used in engineering applications requiring high strength and greater ductility in combination with high hardness is investigated. Due to increasing interest in metallic honeycomb and sandwiched structures, solid and porous specimens are prepared and examined in similar conditions. Specimen using two different powders of 316L stainless steel and H13 tool steel alloy are generated by DMD cladding on mild steel plates as substrates. The parts are tested under quasi static compressive loading and curves plotted and analysed for stress vs. strain behaviour. The results indicate that at low laser power, solid and porous steel structures with yield strength and ductility comparable to commercial grades can be produced. Porous structures show excellent characteristics suitable for applications in newly developing field of metallic honeycombs and sandwiched structures. Low modulus of elasticity is a matter of concern, but it can be improved by heat treatment.

2011 ◽  
Vol 374-377 ◽  
pp. 2430-2436
Author(s):  
Gang Shi ◽  
Zhao Liu ◽  
Yong Zhang ◽  
Yong Jiu Shi ◽  
Yuan Qing Wang

High strength steel sections have been increasingly used in buildings and bridges, and steel angles have also been widely used in many steel structures, especially in transmission towers and long span trusses. However, high strength steel exhibits mechanical properties that are quite different from ordinary strength steel, and hence, the local buckling behavior of steel equal angle members under axial compression varies with the steel strength. However, there is a lack of research on the relationship of the local buckling behavior of steel equal angle members under axial compression with the steel strength. A finite element model is developed in this paper to analyze the local buckling behavior of steel equal angle members under axial compression, and study its relationship with the steel strength and the width-to-thickness ratio of the angle leg. The finite element analysis (FEA) results are compared with the corresponding design method in the American code AISC 360-05, which provides a reference for the related design.


2015 ◽  
Vol 22 (2) ◽  
pp. 65-82 ◽  
Author(s):  
Hong-Seung Roh ◽  
민연주 ◽  
장소영 ◽  
신승진 ◽  
YU, Byeong-Jae ◽  
...  

2007 ◽  
pp. 4720-4725
Author(s):  
A. Nagao ◽  
K. Hayashi ◽  
K. Oi ◽  
S. Mitao ◽  
N. Shikanai

2018 ◽  
Vol 941 ◽  
pp. 269-273
Author(s):  
Constant Ramard ◽  
Denis Carron ◽  
Philippe Pilvin ◽  
Florent Bridier

Multipass arc welding is commonly used for thick plates assemblies in shipbuilding. Sever thermal cycles induced by the process generate inhomogeneous plastic deformation and residual stresses. Metallurgical transformations contribute at each pass to the residual stress evolution. Since residual stresses can be detrimental to the performance of the welded product, their estimation is essential and numerical modelling is useful to predict them. Finite element analysis of multipass welding of a high strength steel is achieved with a special emphasis on mechanical and metallurgical effects on residual stress. A welding mock-up was specially designed for experimental measurements of in-depth residual stresses using contour method and deep hole drilling and to provide a simplified case for simulation. The computed results are discussed through a comparison with experimental measurements.


Sign in / Sign up

Export Citation Format

Share Document