Development of Digital Filter Software in Auto Safety Components Test

2014 ◽  
Vol 983 ◽  
pp. 428-435
Author(s):  
Chang Jiang Du ◽  
Tian Qiang Du ◽  
Wei Liu

In auto safety components crash test, noise and interference signals is inevitable in the collected physical data, which will seriously affect the accuracy of the data. In this paper, the advantages and disadvantages are compared between IIR filters and FIR filters, a Butterworth filter is designed using the impulse response invariant method, and a filtering software is developed to meet the need of data processing for different measurement projects. The results showed that: according to different test data, the filter can achieve CFC filtering of different frequency levels, exclude interference data, preserve useful information, which ensures data accuracy and reliability, provides a convenient for the following data processing.

In real time Signal Processing applications, the analogue signal is over sampled as per the Nyquist criterion in order to avoid the aliasing effect. Floating Point (FP) adder is used in the floating point Multiplier Accumulator Content (MAC) for real time Digital Signal Processing(DSP) applications. The heart of any real time DSP processor is floating point MAC. Floating Point MAC is constructed by Finite Impulse Response (FIR) or Infinite Impulse Response (IIR) filters. FIR filters are stable than IIR filters because the impulse response is finite in FIR. Hence, for stable applications FIR filters are preferred. These FIR filters are intern constituted by FP adder, FP multiplier and shifter. In conventional floating point adder the two floating point numbers are added in series. Series means one after the other so the computation speed is less. In series fashion adding the floating point numbers means definitely it furnishes more delay[1] because in the addition of floating point numbers, along with the addition of mantissas; computation is required for both signs and exponents also. Hence, the processing speed is slow for computing the floating point numbers compared with fixed point numbers. Therefore, in order to increase the speed of operation for floating point addition in real time application i.e., to add 16- samples at a time which are in floating notation; a parallel and pipe line technique is going to be incorporated to the two bit floating point architecture. Before developing such novel architecture, a novel algorithm is developed and after, the novel architecture is developed. The total work is simulated by Modelsim 10.3c tool and synthesized by Xilinx 13.6 tool.


1993 ◽  
Vol 03 (03) ◽  
pp. 757-771 ◽  
Author(s):  
K. S. PRASAD ◽  
C. ESWARAN ◽  
A. ANTONIOU

New first-order complex digital-filter sections are realized using the concept of the generalized-immittance converter. These sections are then employed for the realization of infinite impulse response digital filters with real coefficients. The filters obtained with the proposed sections have sensitivity and roundoff noise properties that are comparable to those of other structures of this class reported earlier.


2014 ◽  
Vol 505-506 ◽  
pp. 281-285
Author(s):  
Ming Qiu Gao ◽  
Run Qing Guo ◽  
Rong Liang Liang

Vehicle handling and stability has effect on positive safety of automotive directly. Test system of handling and stability is built for its road test and the test variables signal can be acquired and stored synchronously. Based on MATLAB GUI, software is developed for the test data processing, so that the stored data is to be analyzed and handling and stability test result is given by the software automatically. Using the test system in paper, handling and stability road test of one domestic sedan is fulfilled and scored, which verifies the applicability of the test system and scoring software in paper.


Author(s):  
Songwang Zheng ◽  
Cao Chen ◽  
Lei Han ◽  
Xiaoyong Zhang ◽  
Xiaojun Yan

To carry out combined low and high cycle fatigue (CCF) test on turbine blades in a bench environment, it is imperative to simulate the vibration loads of turbine blades in the field. Due to the low vibration stress of turbine blades in the working state, the test time will be very long if the test vibration stress is equal to the real vibration stress in working state. Therefore, an accelerated test will be used when the test life reach the target value (typically 107). During the accelerated test, each blade is tested at two or more times than the real vibration stress. That means some specimens are tested under two vibration stress levels. In this case, a reasonable data processing method becomes very important. For this reason, a data processing method for the CCF accelerated test is proposed in this paper. These test data are iterated on the basis of S-N curve. Finally, ten real turbine blades are tested in a bench environment, one of them is tested under two vibration stress levels. The test data is processed using the method proposed above to obtain the unaccelerated life data.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Hua Zheng ◽  
Junhao Liu ◽  
Shiqiang Duan

Flutter tests are conducted primarily for the purpose of modal parameter estimation and flutter boundary prediction, the accuracy of which is severely affected by the acquired data quality, structural modal density, and nonstationary conditions. An improved Hilbert-Huang Transform (HHT) algorithm is presented in this paper which mitigates the typical mode mixing effect via modulation. The algorithm is validated by theory, by numerical simulation, and per actual flight flutter test data. The results show that the proposed method could extract the flutter model parameters and predict the flutter speed more accurately, which is feasible for the current flutter test data processing.


Sign in / Sign up

Export Citation Format

Share Document