scholarly journals A multi objective volleyball premier league algorithm for green scheduling identical parallel machines with splitting jobs

Author(s):  
Khodakaram Salimifard ◽  
Jingpeng Li ◽  
Davood Mohammadi ◽  
Reza Moghdani

AbstractParallel machine scheduling is one of the most common studied problems in recent years, however, this classic optimization problem has to achieve two conflicting objectives, i.e. minimizing the total tardiness and minimizing the total wastes, if the scheduling is done in the context of plastic injection industry where jobs are splitting and molds are important constraints. This paper proposes a mathematical model for scheduling parallel machines with splitting jobs and resource constraints. Two minimization objectives - the total tardiness and the number of waste - are considered, simultaneously. The obtained model is a bi-objective integer linear programming model that is shown to be of NP-hard class optimization problems. In this paper, a novel Multi-Objective Volleyball Premier League (MOVPL) algorithm is presented for solving the aforementioned problem. This algorithm uses the crowding distance concept used in NSGA-II as an extension of the Volleyball Premier League (VPL) that we recently introduced. Furthermore, the results are compared with six multi-objective metaheuristic algorithms of MOPSO, NSGA-II, MOGWO, MOALO, MOEA/D, and SPEA2. Using five standard metrics and ten test problems, the performance of the Pareto-based algorithms was investigated. The results demonstrate that in general, the proposed algorithm has supremacy than the other four algorithms.

Symmetry ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 136
Author(s):  
Wenxiao Li ◽  
Yushui Geng ◽  
Jing Zhao ◽  
Kang Zhang ◽  
Jianxin Liu

This paper explores the combination of a classic mathematical function named “hyperbolic tangent” with a metaheuristic algorithm, and proposes a novel hybrid genetic algorithm called NSGA-II-BnF for multi-objective decision making. Recently, many metaheuristic evolutionary algorithms have been proposed for tackling multi-objective optimization problems (MOPs). These algorithms demonstrate excellent capabilities and offer available solutions to decision makers. However, their convergence performance may be challenged by some MOPs with elaborate Pareto fronts such as CFs, WFGs, and UFs, primarily due to the neglect of diversity. We solve this problem by proposing an algorithm with elite exploitation strategy, which contains two parts: first, we design a biased elite allocation strategy, which allocates computation resources appropriately to elites of the population by crowding distance-based roulette. Second, we propose a self-guided fast individual exploitation approach, which guides elites to generate neighbors by a symmetry exploitation operator, which is based on mathematical hyperbolic tangent function. Furthermore, we designed a mechanism to emphasize the algorithm’s applicability, which allows decision makers to adjust the exploitation intensity with their preferences. We compare our proposed NSGA-II-BnF with four other improved versions of NSGA-II (NSGA-IIconflict, rNSGA-II, RPDNSGA-II, and NSGA-II-SDR) and four competitive and widely-used algorithms (MOEA/D-DE, dMOPSO, SPEA-II, and SMPSO) on 36 test problems (DTLZ1–DTLZ7, WGF1–WFG9, UF1–UF10, and CF1–CF10), and measured using two widely used indicators—inverted generational distance (IGD) and hypervolume (HV). Experiment results demonstrate that NSGA-II-BnF exhibits superior performance to most of the algorithms on all test problems.


2014 ◽  
Vol 984-985 ◽  
pp. 419-424
Author(s):  
P. Sabarinath ◽  
M.R. Thansekhar ◽  
R. Saravanan

Arriving optimal solutions is one of the important tasks in engineering design. Many real-world design optimization problems involve multiple conflicting objectives. The design variables are of continuous or discrete in nature. In general, for solving Multi Objective Optimization methods weight method is preferred. In this method, all the objective functions are converted into a single objective function by assigning suitable weights to each objective functions. The main drawback lies in the selection of proper weights. Recently, evolutionary algorithms are used to find the nondominated optimal solutions called as Pareto optimal front in a single run. In recent years, Non-dominated Sorting Genetic Algorithm II (NSGA-II) finds increasing applications in solving multi objective problems comprising of conflicting objectives because of low computational requirements, elitism and parameter-less sharing approach. In this work, we propose a methodology which integrates NSGA-II and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) for solving a two bar truss problem. NSGA-II searches for the Pareto set where two bar truss is evaluated in terms of minimizing the weight of the truss and minimizing the total displacement of the joint under the given load. Subsequently, TOPSIS selects the best compromise solution.


2005 ◽  
Vol 13 (4) ◽  
pp. 501-525 ◽  
Author(s):  
Kalyanmoy Deb ◽  
Manikanth Mohan ◽  
Shikhar Mishra

Since the suggestion of a computing procedure of multiple Pareto-optimal solutions in multi-objective optimization problems in the early Nineties, researchers have been on the look out for a procedure which is computationally fast and simultaneously capable of finding a well-converged and well-distributed set of solutions. Most multi-objective evolutionary algorithms (MOEAs) developed in the past decade are either good for achieving a well-distributed solutions at the expense of a large computational effort or computationally fast at the expense of achieving a not-so-good distribution of solutions. For example, although the Strength Pareto Evolutionary Algorithm or SPEA (Zitzler and Thiele, 1999) produces a much better distribution compared to the elitist non-dominated sorting GA or NSGA-II (Deb et al., 2002a), the computational time needed to run SPEA is much greater. In this paper, we evaluate a recently-proposed steady-state MOEA (Deb et al., 2003) which was developed based on the ε-dominance concept introduced earlier (Laumanns et al., 2002) and using efficient parent and archive update strategies for achieving a well-distributed and well-converged set of solutions quickly. Based on an extensive comparative study with four other state-of-the-art MOEAs on a number of two, three, and four objective test problems, it is observed that the steady-state MOEA is a good compromise in terms of convergence near to the Pareto-optimal front, diversity of solutions, and computational time. Moreover, the ε-MOEA is a step closer towards making MOEAs pragmatic, particularly allowing a decision-maker to control the achievable accuracy in the obtained Pareto-optimal solutions.


2020 ◽  
Vol 9 (4) ◽  
pp. 236
Author(s):  
Xiaolan Li ◽  
Bingbo Gao ◽  
Zhongke Bai ◽  
Yuchun Pan ◽  
Yunbing Gao

Complex geographical spatial sampling usually encounters various multi-objective optimization problems, for which effective multi-objective optimization algorithms are much needed to help advance the field. To improve the computational efficiency of the multi-objective optimization process, the archived multi-objective simulated annealing (AMOSA)-II method is proposed as an improved parallelized multi-objective optimization method for complex geographical spatial sampling. Based on the AMOSA method, multiple Markov chains are used to extend the traditional single Markov chain; multi-core parallelization technology is employed based on multi-Markov chains. The tabu-archive constraint is designed to avoid repeated searches for optimal solutions. Two cases were investigated: one with six typical traditional test problems, and the other for soil spatial sampling optimization applications. Six performance indices of the two cases were analyzed—computational time, convergence, purity, spacing, min-spacing and displacement. The results revealed that AMOSA-II performed better which was more effective in obtaining preferable optimal solutions compared with AMOSA and NSGA-II. AMOSA-II can be treated as a feasible means to apply in other complex geographical spatial sampling optimizations.


Author(s):  
Jamie A. Manson ◽  
Thomas W. Chamberlain ◽  
Richard A. Bourne

AbstractIn many real-world problems there is often the requirement to optimise multiple conflicting objectives in an efficient manner. In such problems there can be the requirement to optimise a mixture of continuous and discrete variables. Herein, we propose a new multi-objective algorithm capable of optimising both continuous and discrete bounded variables in an efficient manner. The algorithm utilises Gaussian processes as surrogates in combination with a novel distance metric based upon Gower similarity. The MVMOO algorithm was compared to an existing mixed variable implementation of NSGA-II and random sampling for three test problems. MVMOO shows competitive performance on all proposed problems with efficient data acquisition and approximation of the Pareto fronts for the selected test problems.


2018 ◽  
Vol 10 (12) ◽  
pp. 4580 ◽  
Author(s):  
Li Wang ◽  
Huan Shi ◽  
Lu Gan

With rapid development of the healthcare network, the location-allocation problems of public facilities under increased integration and aggregation needs have been widely researched in China’s developing cites. Since strategic formulation involves multiple conflicting objectives and stakeholders, this paper presents a practicable hierarchical location-allocation model from the perspective of supply and demand to characterize the trade-off between social, economical and environmental factors. Due to the difficulties of rationally describing and the efficient calculation of location-allocation problems as a typical Non-deterministic Polynomial-Hard (NP-hard) problem with uncertainty, there are three crucial challenges for this study: (1) combining continuous location model with discrete potential positions; (2) introducing reasonable multiple conflicting objectives; (3) adapting and modifying appropriate meta-heuristic algorithms. First, we set up a hierarchical programming model, which incorporates four objective functions based on the actual backgrounds. Second, a bi-level multi-objective particle swarm optimization (BLMOPSO) algorithm is designed to deal with the binary location decision and capacity adjustment simultaneously. Finally, a realistic case study contains sixteen patient points with maximum of six open treatment units is tested to validate the availability and applicability of the whole approach. The results demonstrate that the proposed model is suitable to be applied as an extensive planning tool for decision makers (DMs) to generate policies and strategies in healthcare and design other facility projects.


2021 ◽  
Vol 1 (4) ◽  
pp. 1-26
Author(s):  
Faramarz Khosravi ◽  
Alexander Rass ◽  
Jürgen Teich

Real-world problems typically require the simultaneous optimization of multiple, often conflicting objectives. Many of these multi-objective optimization problems are characterized by wide ranges of uncertainties in their decision variables or objective functions. To cope with such uncertainties, stochastic and robust optimization techniques are widely studied aiming to distinguish candidate solutions with uncertain objectives specified by confidence intervals, probability distributions, sampled data, or uncertainty sets. In this scope, this article first introduces a novel empirical approach for the comparison of candidate solutions with uncertain objectives that can follow arbitrary distributions. The comparison is performed through accurate and efficient calculations of the probability that one solution dominates the other in terms of each uncertain objective. Second, such an operator can be flexibly used and combined with many existing multi-objective optimization frameworks and techniques by just substituting their standard comparison operator, thus easily enabling the Pareto front optimization of problems with multiple uncertain objectives. Third, a new benchmark for evaluating uncertainty-aware optimization techniques is introduced by incorporating different types of uncertainties into a well-known benchmark for multi-objective optimization problems. Fourth, the new comparison operator and benchmark suite are integrated into an existing multi-objective optimization framework that features a selection of multi-objective optimization problems and algorithms. Fifth, the efficiency in terms of performance and execution time of the proposed comparison operator is evaluated on the introduced uncertainty benchmark. Finally, statistical tests are applied giving evidence of the superiority of the new comparison operator in terms of \epsilon -dominance and attainment surfaces in comparison to previously proposed approaches.


Author(s):  
Fifin Sonata ◽  
Dede Prabowo Wiguna

Penjadwalan mesin produksi dalam dunia industri memiliki peranan penting sebagai bentuk pengambilan keputusan. Salah satu jenis sistem penjadwalan mesin produksi adalah sistem penjadwalan mesin produksi tipe flow shop. Dalam penjadwalan flow shop, terdapat sejumlah pekerjaan (job) yang tiap-tiap job memiliki urutan pekerjaan mesin yang sama. Optimasi penjadwalan mesin produksi flow shop berkaitan dengan penyusunan penjadwalan mesin yang mempertimbangkan 2 objek yaitu makespan dan total tardiness. Optimasi kedua permasalahan tersebut merupakan optimasi yang bertolak belakang sehingga diperlukan model yang mengintegrasikan permasalahan tersebut dengan optimasi multi-objective A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimazitaion : NSGA-II. Dalam penelitian ini akan dibandingkan 2 buah metode yaitu Aggregat Of Function (AOF) dengan NSGA-II agar dapat terlihat nilai solusinya. Penyelesaian penjadwalan mesin produksi flow shop dengan algoritma NSGA-II untuk membangun jadwal dengan meminimalkan makespan dan total tardiness.Tujuan yang ingin dicapai adalah mengetahui bahwa model yang dikembangkan akan memberikan solusi penjadwalan mesin produksi flow shop yang efisien berupa solusi pareto optimal yang dapat memberikan sekumpulan solusi alternatif bagi pengambil keputusan dalam membuat penjadwalan mesin produksi yang diharapkan. Solusi pareto optimal yang dihasilkan merupakan solusi optimasi multi-objective yang optimal dengan trade-off terhadap seluruh objek, sehingga seluruh solusi pareto optimal sama baiknya.


2021 ◽  
Vol 336 ◽  
pp. 02022
Author(s):  
Liang Meng ◽  
Wen Zhou ◽  
Yang Li ◽  
Zhibin Liu ◽  
Yajing Liu

In this paper, NSGA-Ⅱ is used to realize the dual-objective optimization and three-objective optimization of the solar-thermal photovoltaic hybrid power generation system; Compared with the optimal solution set of three-objective optimization, optimization based on technical and economic evaluation indicators belongs to the category of multi-objective optimization. It can be considered that NSGA-Ⅱ is very suitable for multi-objective optimization of solar-thermal photovoltaic hybrid power generation system and other similar multi-objective optimization problems.


Sign in / Sign up

Export Citation Format

Share Document