A New Clustering Routing Algorithm of Wireless Sensor Network

2014 ◽  
Vol 986-987 ◽  
pp. 2095-2098
Author(s):  
Li Qiang Chen

In wireless sensor network, node’s energy is limited. The energy consumption of transmission a bit is larger than that of handle a bit. If it adopt effective routing algorithm, it can greatly improve the energy efficiency of wireless sensor network. In order to improve the energy efficiency of wireless sensor network in the large area, we propose a clustering routing algorithm based on energy, the algorithm realize the multi-hops communication between cluster heads by dividing the WSN area into concentric rings, and reduce the size of radius of the clusters gradually when the nodes’ energy is decreasing slowly. The results of simulation show that the algorithm can effectively prolong the network lifetime.

2013 ◽  
Vol 13 (4) ◽  
pp. 200-205 ◽  
Author(s):  
Wang Tong ◽  
Wu Jiyi ◽  
Xu He ◽  
Zhu Jinghua ◽  
Charles Munyabugingo

In the routing protocol for wireless sensor network, the cluster size is generally fixed in clustering routing algorithm for wireless sensor network, which can easily lead to the “hot spot” problem. Furthermore, the majority of routing algorithms barely consider the problem of long distance communication between adjacent cluster heads that brings high energy consumption. Therefore, this paper proposes a new cross unequal clustering routing algorithm based on the EEUC algorithm. In order to solve the defects of EEUC algorithm, this algorithm calculating of competition radius takes the node’s position and node’s remaining energy into account to make the load of cluster heads more balanced. At the same time, cluster adjacent node is applied to transport data and reduce the energy-loss of cluster heads. Simulation experiments show that, compared with LEACH and EEUC, the proposed algorithm can effectively reduce the energy-loss of cluster heads and balance the energy consumption among all nodes in the network and improve the network lifetime


2013 ◽  
Vol 765-767 ◽  
pp. 980-984
Author(s):  
Xi Rong Bao ◽  
Jia Hua Xie ◽  
Shuang Long Li

This article focused on the energy limit property of Wireless Sensor Network, and proposed a residual energy based algorithm WN-LEACH, with the classic network mode of LEACH routing algorithm. The algorithm combines the proportion of residual energy in the total energy with the cumulative number of the normal nodes supported by the cluster heads as a cluster selection reference. In order to balance the energy consumption of each cluster-head, the algorithm took both the different positions of the base station and the initial energy of the network into consideration, and weighted the two factors to balance the energy consumption between transmitting the signals and data fusion. Simulation results show that the algorithm can promote the lifetime of the uneven energy network and does not impair the effects of the LEACH algorithm.


2015 ◽  
Vol 741 ◽  
pp. 386-389
Author(s):  
Jian Zhang

As the deficiencies of present Wireless Sensor Network Routing Protocol in extending network lifetime and improving network performance, a kind of Routing Algorithm based on Multi-optimization Function is proposed in order to achieve the optimization goals of balancing network node energy consumption and extending network lifetime. By introducing parameters like available energy of nodes, routing hops and physical distance between nodes into routing selection function, optimum path is set up. Therefore, the integrated optimization of Wireless Sensor Network performance is realized. As NS2 emulation result shows, this algorithm has achieved higher transmission reliability, lower energy consumption and much longer network lifetime. Compared with traditional directed diffusion algorithm, the rate of data transmission success has risen by 15.3%, utilization ratio of network energy by 9.7%, and network lifetime by 37.8%. Routing Algorithm based on Multi-optimization Function has more advantages in Wireless Sensor Network.


2018 ◽  
Vol 232 ◽  
pp. 04050
Author(s):  
Yong-wen Du ◽  
Zhang-min Wang ◽  
Gang Cai ◽  
Jun-hui Gong

In order to solve the problem of unbalanced load consumption of nodes for wireless sensor networks (WSNs), this paper proposes a load-balanced routing algorithm based on cluster heads optimization for wireless sensor network. The proposed algorithm first applies first-order wireless transmission model to calculate the optimal number of clusters, then calculate nodes competitiveness rating by fuzzy algorithm considering the residual energy of node and distance from the node to base station, cluster head selection uses unequal clustering algorithm according to the competitiveness of nodes. By node competitiveness and energy management mechanism which cooperate with each other to select the best cluster heads. Use connected optimization between clusters to search multi-hop paths base station for reducing energy consumption of node, and consider transmission energy consumption, residual energy, transmission distance and other factors. The experimental results show that the proposed algorithm compared with LEACH and UCDP algorithm, can balance loading and effectively extend the life cycle of wireless sensor network.


2013 ◽  
Vol 475-476 ◽  
pp. 569-572
Author(s):  
Kai Guo Qian ◽  
Lin Ou

The existing clustering protocols exists shortages that the nodes with small residual energy may be choose as cluster nodes, which communicate directly with sink causes more energy consumption. Member nodes transmit data directly to cluster head also caused more energy consumption. A reliable energy efficient wireless sensor network hierarchical routing algorithm (REHRA) is proposed to further improve energy efficiency. It introduces residual energy factor for election of heads that makes nodes with more residual energy priority become heads. The data transmission for heads to sink uses flooding algorithm that ensures reliability. Routing tree is formed within local cluster and data delivers from leaf nodes to the cluster head. Performance analysis and simulation experiment shows that the new algorithm provides higher energy efficiency and longer lifetime.


2014 ◽  
Vol 563 ◽  
pp. 316-319 ◽  
Author(s):  
Yong Chao Liu ◽  
Yue Xia Zhang

Reducing the network energy consumption and increasing the lifetime of network are important content for wireless sensor network. LEACH is an adaptive routing algorithm with low consumption for wireless sensor network. However there are many shortcomings in LEACH routing algorithm such as too much energy consumption of cluster heads and uneven clustering each round. This paper puts forward a new improved algorithm named H-LEACH to solve the problem above. It lets the nodes holding more energy have the high possibility to become cluster-heads through a threshold and constraints the number of clusters each round at the same time so that it can balance the energy distribution and reduce energy cost. Simulation results show that H-LEACH is more energy-efficient than LEACH protocol.


2021 ◽  
Author(s):  
Ashok T ◽  
Prabakaran R

Abstract Wireless Sensor Network (WSN) is becoming a very important area of research in today’s world and contributes a lot in the field of technology. Reducing energy consumption and improving the network lifetime is the key factor to be considered.Clustering provides an effective way for prolonging the lifetime of a wireless sensor network. Current clustering algorithms usually utilize two techniques, selecting cluster heads with more residual energy and rotating cluster heads periodically, to distribute the energy consumption among nodes in each cluster and extend the network lifetime. Also, it comprises various sensor nodes to detect different parameters. Among those non-replaceable batteries plays a greater part. Hence the system with such networks is essential that the sensor nodes consume as little energy as possible.To address the problem, we propose anovel model namely enhanced energy distributed unequal clustering which is mainly utilized for tackling energy consumption issues in multi-hop remote sensor systems. In the proposed method with an area of base station and energy are given significance as clustering parameters. Because of these parameters, diverse nodes are assigned. Here, another methodology has been proposed to enhance the working of EDUC, by electing cluster heads considering several nodes in the neighborhood. The incorporation of the area data for calculation of the opposition radii gives better adjusting of energy in correlation with the current methodology. The technique utilized is of holding similar bunches for a couple of rounds and is successful in decreasing the clustering overhead. The execution of the proposed convention has been assessed under three distinct scenarios and contrasted and existing conventions through reenactments. The outcomes demonstrate that the proposed plan beats the current conventions regarding system lifetime and performances in all the scenarios in terms of delay, energy consumption, packet loss ratio, and packet received ratio.


2018 ◽  
Vol 7 (3.12) ◽  
pp. 1322 ◽  
Author(s):  
Vrince Vimal ◽  
Madhav J Nigam

Clustering of the sensors in wireless sensor network is done to achieve energy efficiency. The nodes, which are unable to join any cluster, are referred to as isolated nodes and tend to transfer information straight to the base station. It is palpable that isolated nodes and cluster heads communicate with the base station and tend to exhaust their energy leaving behind coverage holes. In this paper, we propose the innovative clustering scheme using mobile sink approach to extend networks lifetime. The proposed (ORP-MS) algorithm is implemented in MATLAB 2017a and the results revealed that the proposed algorithm outdid the existing algorithms in terms networks lifetime and energy efficiency simultaneously achieved high throughput.  


2011 ◽  
Vol 216 ◽  
pp. 176-180
Author(s):  
Yong Ding ◽  
Yue Mei Su

Wireless Sensor Networks functionality is closely related to network lifetime which depends on the energy consumption, so require energy- efficient protocols to improve the network lifetime. According to the analysis and summary of the current energy efficient estimation algorithms in wireless sensor network An energy-efficient algorithm is proposed,. Then this optimization algorithm proposed in the paper is adopted to improve the traditional diffusion routing protocol. Simulation results show that this algorithm is to effectively balance the network energy consumption, improve the network life-cycle and ensure the communication quality.


Sign in / Sign up

Export Citation Format

Share Document