Driver Fatigue Detection Based on Eye Locating Algorithm

2014 ◽  
Vol 998-999 ◽  
pp. 855-859
Author(s):  
Wei Wu

A method for driver fatigue detection based on eye locating was researched in this paper.. The eye location was achieved by combining gray information with shape information, and matched the eye template of image with which was in the open state. To observe images within a certain time interval was to identify the open or closed state of the drivers' eyes, so as to determine if they have fatigue driving. The results showed that the algorithm could suppress gaussian noise and impulse noise very effectively, and had better filtering performance than the standard median filters..

Author(s):  
Yimin Zhang ◽  
Xianwei Han ◽  
Wei Gao ◽  
Yunliang Hu

Fatigue driving is one of the main causes of traffic accidents. In recent years, considerable attention has been paid to fatigue detection systems, which is an important solution for preventing fatigue driving. In order to prevent and reduce fatigue driving, a driver fatigue detection system based on computer vision is proposed. In this system, an improved face detection method is used to detect the driver’s face from the image obtained by a charge coupled device (CCD) camera. Then, the feature points of the eyes and mouth are located by an ensemble of regression trees. Next, fatigue characteristic parameters are calculated by the improved percentage of eyelid closure over the pupil over time algorithm. Finally, the state of drivers is evaluated by using a fuzzy neural network. The system can effectively monitor and remind the state of drivers so as to significantly avoid or decrease the occurrence of traffic accidents. The experimental results show that the system is of wonderful real-time performance and accurate recognition rate, so it meets the requirements of practicality in driver fatigue detection greatly.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Zuopeng Zhao ◽  
Nana Zhou ◽  
Lan Zhang ◽  
Hualin Yan ◽  
Yi Xu ◽  
...  

With a focus on fatigue driving detection research, a fully automated driver fatigue status detection algorithm using driving images is proposed. In the proposed algorithm, the multitask cascaded convolutional network (MTCNN) architecture is employed in face detection and feature point location, and the region of interest (ROI) is extracted using feature points. A convolutional neural network, named EM-CNN, is proposed to detect the states of the eyes and mouth from the ROI images. The percentage of eyelid closure over the pupil over time (PERCLOS) and mouth opening degree (POM) are two parameters used for fatigue detection. Experimental results demonstrate that the proposed EM-CNN can efficiently detect driver fatigue status using driving images. The proposed algorithm EM-CNN outperforms other CNN-based methods, i.e., AlexNet, VGG-16, GoogLeNet, and ResNet50, showing accuracy and sensitivity rates of 93.623% and 93.643%, respectively.


2019 ◽  
Vol 29 (05) ◽  
pp. 1850057 ◽  
Author(s):  
Qing Cai ◽  
Zhong-Ke Gao ◽  
Yu-Xuan Yang ◽  
Wei-Dong Dang ◽  
Celso Grebogi

Driver fatigue is an important contributor to road accidents, and driver fatigue detection has attracted a great deal of attention on account of its significant importance. Numerous methods have been proposed to fulfill this challenging task, though, the characterization of the fatigue mechanism still, to a large extent, remains to be investigated. To address this problem, we, in this work, develop a novel Multiplex Limited Penetrable Horizontal Visibility Graph (Multiplex LPHVG) method, which allows in not only detecting fatigue driving but also probing into the brain fatigue behavior. Importantly, we use the method to construct brain networks from EEG signals recorded from different subjects performing simulated driving tasks under alert and fatigue driving states. We then employ clustering coefficient, global efficiency and characteristic path length to characterize the topological structure of the networks generated from different brain states. In addition, we combine average edge overlap with the network measures to distinguish alert and mental fatigue states. The high-accurate classification results clearly demonstrate and validate the efficacy of our multiplex LPHVG method for the fatigue detection from EEG signals. Furthermore, our findings show a significant increase of the clustering coefficient as the brain evolves from alert state to mental fatigue state, which yields novel insights into the brain behavior associated with fatigue driving.


2020 ◽  
Vol 53 (2) ◽  
pp. 15374-15379
Author(s):  
Hu He ◽  
Xiaoyong Zhang ◽  
Fu Jiang ◽  
Chenglong Wang ◽  
Yingze Yang ◽  
...  

Entropy ◽  
2021 ◽  
Vol 23 (10) ◽  
pp. 1298
Author(s):  
Nan Zhao ◽  
Dawei Lu ◽  
Kechen Hou ◽  
Meifei Chen ◽  
Xiangyu Wei ◽  
...  

With the increasing pressure of current life, fatigue caused by high-pressure work has deeply affected people and even threatened their lives. In particular, fatigue driving has become a leading cause of traffic accidents and deaths. This paper investigates electroencephalography (EEG)-based fatigue detection for driving by mining the latent information through the spatial-temporal changes in the relations between EEG channels. First, EEG data are partitioned into several segments to calculate the covariance matrices of each segment, and then we feed these matrices into a recurrent neural network to obtain high-level temporal information. Second, the covariance matrices of whole signals are leveraged to extract two kinds of spatial features, which will be fused with temporal characteristics to obtain comprehensive spatial-temporal information. Experiments on an open benchmark showed that our method achieved an excellent classification accuracy of 93.834% and performed better than several novel methods. These experimental results indicate that our method enables better reliability and feasibility in the detection of fatigued driving.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Quan Yuan ◽  
Zhenyun Peng ◽  
Zhencheng Chen ◽  
Yanke Guo ◽  
Bin Yang ◽  
...  

Medical image information may be polluted by noise in the process of generation and transmission, which will seriously hinder the follow-up image processing and medical diagnosis. In medical images, there is a typical mixed noise composed of additive white Gaussian noise (AWGN) and impulse noise. In the conventional denoising methods, impulse noise is first removed, followed by the elimination of white Gaussian noise (WGN). However, it is difficult to separate the two kinds of noises completely in practical application. The existing denoising algorithm of weight coding based on sparse nonlocal regularization, which can simultaneously remove AWGN and impulse noise, is plagued by the problems of incomplete noise removal and serious loss of details. The denoising algorithm based on sparse representation and low rank constraint can preserve image details better. Thus, a medical image denoising algorithm based on sparse nonlocal regularization weighted coding and low rank constraint is proposed. The denoising effect of the proposed method and the original algorithm on computed tomography (CT) image and magnetic resonance (MR) image are compared. It is revealed that, under different σ and ρ values, the PSNR and FSIM values of CT and MRI images are evidently superior to those of traditional algorithms, suggesting that the algorithm proposed in this work has better denoising effects on medical images than traditional denoising algorithms.


Sign in / Sign up

Export Citation Format

Share Document