Nanostructured Ceramic Thin Films and Membranes by Wet Chemical Processing Methods

2006 ◽  
Vol 45 ◽  
pp. 1252-1259
Author(s):  
Jing Yu Shi ◽  
Matthew L. Mottern ◽  
Krenar Shqau ◽  
Henk Verweij

Nanostructured ceramic thin films and membranes are used for protective or functional purposes and prepared on dense or porous substrate materials. Wet chemical methods enable cheap, low-temperature, mass-scale manufacturing routes. They produce fine-grained porous and dense micro-structures that cannot be realized otherwise. In wet-chemical processing, clean nanoparticle dispersions are deposited on the substrate at, primarily, ambient conditions. The deposition is followed by a (rapid) thermal processing treatment to remove liquids and organic additives, to convert precursors to the target composition, and to establish the final porous and dense micro-structure. In the synthesis of precursor dispersions it is very important to obtain nanoparticles with a near-isometric shape and a fairly narrow particle size distribution, without the formation of secondary (agglomerate) structures. In particular the latter requires careful control of solution and interfacial chemistry to achieve proper colloidal stability, during and after the synthesis process. Characterization of coating integrity, defect morphology and defect population is done by decoration methods, microscopy, ellipsometry and statistical methods that employ membrane transport properties.

1994 ◽  
Author(s):  
Donald R. Uhlmann ◽  
Sharnaz Motakef ◽  
Tayyab I. Suratwala ◽  
Judy E. Young ◽  
J. M. Boulton ◽  
...  

1999 ◽  
Vol 30 (7) ◽  
pp. 959-967 ◽  
Author(s):  
C.H. Chen ◽  
M.H.J. Emond ◽  
E.M. Kelder ◽  
B. Meester ◽  
J. Schoonman

2006 ◽  
Vol 21 (11) ◽  
pp. 2894-2903 ◽  
Author(s):  
Jing-Jong Shyue ◽  
Rebecca E. Cochran ◽  
Nitin P. Padture

A template-based, electroless wet-chemical method for synthesis of nanotubes and nanowires of nanocrystalline anatase titanium oxide (titania) at 45 °C is reported. Single-nanowire electrical property measurements reveal low dc resistivities (7–21 × 10−4 Ω cm) in these titania nanowires. In the presence of 1000 parts per million of CO gas at 100 °C, the resistivity is found to increase reversibly, indicating low-temperature gas-sensing capability in these titania nanowires. Thin films of nanocrystalline anatase titania, deposited using a similar wet-chemical method, also have low room-temperature dc resistivities (6–8 × 10−3 Ω cm), and they are transparent to visible light. Nanostructure-properties relations, together with possible electrical conduction, optical absorption, and gas-sensing mechanisms, are discussed. The ability to fashion transparent-conducting and gas-sensing nanocrystalline anatase titania into nanotubes/nanowires and thin films at near-ambient conditions could open a wider field of applications for titania, including nanoelectronics, chemical sensing, solar cells, large-area windows and displays, invisible security circuits, and incorporation of biomolecules and temperature-sensitive moieties.


Author(s):  
J.M. Schwartz ◽  
L.F. Francis ◽  
L.D. Schmidt ◽  
P.S. Schabes-Retchkiman

Ceramic thin films and coatings are of interest for electrical, optical, magnetic and thermal barrier applications. Critical for improved properties in thin films is the development of specific microstructures during processing. To this end, the sol-gel method is advantageous as a versatile processing route. The sol-gel process involves depositing a solution containing metalorganic or colloidal ceramic precursors onto a substrate and heating the deposited layer to form a crystalline or non-crystalline ceramic coating. This route has several advantages, including the ability to create tailored microstructures and properties, to coat large or small areas, simple or complex shapes, and to more easily prepare multicomponent ceramics. Sol-gel derived coatings are amorphous in the as-deposited state and develop their crystalline structure and microstructure during heat-treatment. We are particularly interested in studying the amorphous to crystalline transformation, because many key features of the microstructure such as grain size and grain size distribution may be linked to this transformation.


2008 ◽  
Author(s):  
Xiaomei Guo ◽  
Kewen Kevin. Li ◽  
Xuesheng Chen ◽  
Yingyin Kevin. Zou ◽  
Hua Jiang

Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 585
Author(s):  
Ariel Ma ◽  
Jian Yu ◽  
William Uspal

Natural evaporation has recently come under consideration as a viable source of renewable energy. Demonstrations of the validity of the concept have been reported for devices incorporating carbon-based nanocomposite materials. In this study, we investigated the possibility of using polymer thin films to generate electricity from natural evaporation. We considered a polymeric system based on polyvinylidene fluoride (PVDF). Porous PVDF films were created by incorporating a variety of nanocomposite materials into the polymer structure through a simple mixing procedure. Three nanocomposite materials were considered: carbon nanotubes, graphene oxide, and silica. The evaporation-induced electricity generation was confirmed experimentally under various ambient conditions. Among the nanocomposite materials considered, mesoporous silica (SBA-15) was found to outperform the other two materials in terms of open-circuit voltage, and graphene oxide generated the highest short-circuit current. It was found that the nanocomposite material content in the PVDF film plays an important role: on the one hand, if particles are too few in number, the number of channels will be insufficient to support a strong capillary flow; on the other hand, an excessive number of particles will suppress the flow due to excessive water absorption underneath the surface. We show that the device can be modeled as a simple circuit powered by a current source with excellent agreement between the theoretical predictions and experimental data.


2019 ◽  
Vol 3 (10) ◽  
Author(s):  
Ryan D. Desautels ◽  
Lisa DeBeer-Schmitt ◽  
Sergio A. Montoya ◽  
Julie A. Borchers ◽  
Soong-Geun Je ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document