Development of Non-Silicate Microporous Membranes with High Chemical Resistance

2006 ◽  
Vol 45 ◽  
pp. 2043-2048
Author(s):  
Undine Aust ◽  
Gerhard Tomandl

TiO2-ZrO2 mixed-oxide membranes were prepared via polymeric sol-gel technique. The final composition is already predefined during the preparation of the sols by using the corresponding quantities of the starting alkoxides. The mixed-oxide membranes were characterized by Xray diffraction, nitrogen sorption, and field emission scanning electron microscopy as well as filtration and corrosion tests. The observed results prove the positive influence on the investigated properties by addition of a second oxide. Depending on the composition of the mixed-oxide membranes, a remarkable increase in the crystallization temperatures is demonstrated. Using mixed-oxide systems, the retardation of grain growth is confirmed.

2021 ◽  
Vol 1167 ◽  
pp. 23-33
Author(s):  
Alaa A. Mohammed

Polyetheretherketone (PEEK) is a semicrystalline thermoplastic polymer with high chemical resistance, thermal stability and excellent mechanical properties. In the present work, neat PEEK and 3% bioactive glass/PEEK composites were annealed at various temperatures (100 °C, 200 °C and 300 °C) for (30 and 60) min and characterized with mechanical and density tests, differential scanning calorimetery and Fourier transform infrared spectroscopy. Results manifested bioactive glass powder enhanced the properties of the PEEK matrix. Thermal annealing at (200 and 300 °C) had a positive influence on the mechanical properties and density owing to increase in the level of crystallinity, whereas annealing at (100 °C) had not effect on the properties.


2001 ◽  
Vol 68 (1-3) ◽  
pp. 53-61 ◽  
Author(s):  
Matina Thammachart ◽  
Vissanu Meeyoo ◽  
Thirasak Risksomboon ◽  
Somchai Osuwan

2003 ◽  
Vol 93 (7) ◽  
pp. 3816-3822 ◽  
Author(s):  
A. Taurino ◽  
M. Catalano ◽  
R. Rella ◽  
P. Siciliano ◽  
W. Wlodarski

1989 ◽  
Vol 175 ◽  
Author(s):  
John D. Mackenzie

AbstractMultifunctional engineering systems made up of different material components each providing primarily a single function are well known. Frequently, even for a monofunctional application, the material component must already have an optimum set of secondary properties to fulfill that function. It would be desirable to have multifunctional material components. In this paper some known multifunctional ceramic materials, mainly crystalline and glassy oxide systems, are reviewed. These are conveniently divided into molecular, ultrastructural and integrated materials systems. Projections are made regarding the future developments of multifunctional ceramics as well as nanocomposites with both inorganic and organic components based on the sol-gel technique.


2013 ◽  
Vol 1 (2) ◽  
pp. 59-69 ◽  
Author(s):  
Sarbjit Kaur ◽  
Niraj Bala ◽  
Charu Khosla
Keyword(s):  
Sol Gel ◽  

2011 ◽  
Vol 4 (3) ◽  
pp. 224-237 ◽  
Author(s):  
Aurica P. Chiriac ◽  
Loredana E. Nita ◽  
Iordana Neamtu ◽  
Manuela T. Nistor
Keyword(s):  
Sol Gel ◽  

Sign in / Sign up

Export Citation Format

Share Document