Synthesis and Characterization of Lanthanide Metal-Organic Frameworks with Perfluorinated Linkers

2016 ◽  
Vol 98 ◽  
pp. 70-74
Author(s):  
Andrius Laurikėnas ◽  
Jurgis Barkauskas ◽  
Aivaras Kareiva

In this study, lanthanide elements (Ln3+) and 2,3,5,6-tetrafluoro-1,4-benzenedicarboxylic acid (TFBDC) based metal-organic frameworks (MOFs) were synthesized by precipitation and diffusion-controlled precipitation methods. Powders insoluble in aqueous media and polar solvents were obtained. The microstructure and properties of Ln3+ MOFs were evaluated and discussed. X-ray diffraction (XRD) analysis, infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and fluorescence spectroscopy (FLS) were carried out to characterize Ln3+ MOF's crystallinity, the microstructure, chemical composition and optical properties.

Ceramics ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 54-64 ◽  
Author(s):  
Andrius Laurikenas ◽  
Aldona Beganskiene ◽  
Aivaras Kareiva

In this study, lanthanide metal-organic frameworks Ln(BTC)(DMF)2(H2O) (LnMOFs) are synthesized using the metal nitrates as lanthanide (Ln = La, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb and Lu) source and 1,3,5-benzenetricarboxylic acid (BTC) as a coordination ligand. X-ray diffraction (XRD) analysis, Fourier-transform infrared spectroscopy (FTIR), thermogravimetric (TG/DTG) analysis fluorescence spectroscopy (FLS), and scanning electron microscopy (SEM) are employed to characterize the newly synthesized LnMOFs.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Fei Yuan ◽  
Haixia Ma ◽  
Chumei Yuan ◽  
Chun-Sheng Zhou ◽  
Huai-Ming Hu ◽  
...  

Three new Ln(III)-based metal-organic frameworks (MOFs), having general formula [Ln2(L)2(ox)(H2O)2]n (Ln = Nd (1), Sm (2) and Eu (3)) have been synthesized using multifunctional triazole-carboxylate linker 5-(1H-1,2,4-triazol-1-yl)-1,3-benzenedicarboxylic acid (H2L) and...


CrystEngComm ◽  
2018 ◽  
Vol 20 (2) ◽  
pp. 189-197 ◽  
Author(s):  
X. H. Huang ◽  
L. Shi ◽  
S. M. Ying ◽  
G. Y. Yan ◽  
L. H. Liu ◽  
...  

Two lanthanide–organic frameworks [Ln(HPIDC)(m-bdc)·1.5H2O]n (Ln = Eu 1 or Tb 2; H3PIDC = 2-(4-pyridyl)-1H-imidazole-4,5-dicarboxylic acid; m-H2bdc = 1,3-benzenedicarboxylic acid) were synthesized under hydrothermal conditions.


2021 ◽  
Vol 35 (1) ◽  
pp. 119-128
Author(s):  
S. Iram ◽  
T. Khurshid ◽  
S. Latif ◽  
M. Imran ◽  
F. Kanwal ◽  
...  

Metal organic frameworks are formed by the three-dimensional linkage of metal cores and organic linkers. In this work, bismuth-based metal organic framework (Bi-MOF) has been synthesized by using 5-hydroxyisophthalic acid (H2HIA) as linker via hydrothermal method. The said MOF was structurally characterized by UV/Vis, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), 1H NMR, energy dispersive spectroscopy (EDS), thermogravimetric analysis (TGA) and X-ray diffraction technique. This MOF showed highly porous structure with surface area 1096 m2/g as determined by BET analysis. A model batch adsorption experiment was performed to evaluate the efficiency of methylene blue (MB) dye removal from aqueous media. It was found that monolayer adsorption capacity calculated from the Langmuir isotherm was 0.6240 mg/g. Bi-MOF was also screened for its antibacterial and luminescent behavior.                     KEY WORDS: Bismuth, Metal-organic Frameworks, Luminescence, Sorption   Bull. Chem. Soc. Ethiop. 2021, 35(1), 119-128. DOI: https://dx.doi.org/10.4314/bcse.v35i1.10


2018 ◽  
Vol 71 (11) ◽  
pp. 874 ◽  
Author(s):  
Xue Huang ◽  
Jing Zhang ◽  
Xiao Zhang ◽  
Qing-Ping Wu ◽  
Chun-Hui Yan

Calcined Cu-based metal–organic frameworks impregnated with nickel nitrate catalysts (CuNi@C) were synthesised. X-Ray diffraction, scanning electronic microscopy, energy dispersive X-ray spectrometry, and X-ray photoelectron spectroscopy techniques were applied for the characterisation of the synthesised catalyst, which revealed an octahedral particle shape, rough surface, and metallic copper (Cu, CuO) and nickel (Ni, NiO) particles. CuNi@C was fabricated as a novel peroxymonosulfate (PMS) activator for the oxidative degradation of Acid Orange 7 (AO7) in aqueous media. Results showed that the CuNi@C/PMS system can efficiently degrade nearly 100 % of 0.02 mmol L−1 AO7 within 60 min. In addition, the trapping experiments confirmed the participation of sulfate radicals (SO4•−) and hydroxyl radicals (HO•) as reactive species in the system. Furthermore, the effects of parameters including catalyst and PMS dosages, initial concentration of AO7, and pH were studied. Results showed that the decolourisation efficiency increased with the increase of catalyst dosage, but decreased with the increase of AO7 concentration. The optimal PMS concentration was 0.675 mmol L−1, and initial pH showed no significant effect on the degradation of AO7. Moreover, the CuNi@C could be reused four times with good activity and reusability. Findings revealed that the CuNi@C/PMS system shows potential for degrading contaminants in the environment, due to its catalytic activity and non-negligible adsorption.


2017 ◽  
Vol 70 (3) ◽  
pp. 314 ◽  
Author(s):  
Chuan-Bin Fan ◽  
Xiang-Min Meng ◽  
Yu-Hua Fan ◽  
Zi-Ao Zong ◽  
Xiao-Yin Zhang ◽  
...  

Two novel coordination polymers, namely {[Zn(sbdc)(bmib)]·0.4H2O}n (1) and {[Zn(sbdc)(bibd)]·DMF}n (2) (H2sbdc = 4,4′-stilbenedicarboxylic, bmib = 1,4-bis(2-methylimidazol-1-yl)butane, bibd = 1,1′-(1,4-butanediyl)bis(imidazole), DMF = N,N-dimethylformamide), have been acquired under solvothermal conditions, and have been characterised by elemental analysis, infrared spectra, thermogravimetric analysis, and single-crystal X-ray diffraction (XRD). Single-crystal XRD analysis reveals that 1 shows eight-fold interpenetrating 3D frameworks with a four-connected (66) sqc6 topology and 2 displays four-connected three-fold interpenetrating 3D frameworks. The flexible N-donor ligands play an important role in the construction of the final topological structures for 1 and 2. Furthermore, 1 and 2 exhibit good photodegradation capability and photoluminescence properties.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4751
Author(s):  
Jayashree Ethiraj ◽  
Vinayagam Surya ◽  
Parasuraman Selvam ◽  
Jenny G. Vitillo

We report on the synthesis and the characterization of a novel cobalt trimesate metal-organic framework, designated as KCL-102. Powder X-ray diffraction pattern of KCL-102 is dominated by a reflection at 10.2° (d-spacing = 8.7 Å), while diffuse reflectance UV-Vis spectroscopy indicates that the divalent cobalt centers are in two different coordination geometries: tetrahedral and octahedral. Further, the material shows low stability in humid air, and it transforms into the well-known phase of hydrous cobalt trimesate, Co3(BTC)2·12H2O. We associated this transition with the conversion of the tetrahedral cobalt to octahedral cobalt.


2020 ◽  
Vol 11 (34) ◽  
pp. 9173-9180 ◽  
Author(s):  
Naomi Biggins ◽  
Michael E. Ziebel ◽  
Miguel I. Gonzalez ◽  
Jeffrey R. Long

Single-crystal X-ray diffraction reveals structural influences on gas adsorption properties in anionic metal–organic frameworks.


Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1260 ◽  
Author(s):  
Germán E. Gomez ◽  
María dos Santos Afonso ◽  
Héctor A. Baldoni ◽  
Federico Roncaroli ◽  
Galo J. A. A. Soler-Illia

Since the first studies of luminescent sensors based on metal organic frameworks (MOFs) about ten years ago, there has been an increased interest in the development of specific sensors towards cations, anions, explosives, small molecules, solvents, etc. However, the detection of toxic compounds related to agro-industry and nuclear activity is noticeably scarce or even non-existent. In this work, we report the synthesis and characterization of luminescent lanthanide-based MOFs (Ln-MOFs) with diverse crystalline architectures obtained by solvothermal methods. The luminescent properties of the lanthanides, and the hypersensitive transitions of Eu3+ (5D0→7F2) and Tb3+ (5D4→7F5) intrinsically found in the obtained MOFs in particular, were evaluated and employed as chemical sensors for agrochemical and cationic species. The limit of detection (LOD) of Tb-PSA MOFs (PSA = 2-phenylsuccinate) was 2.9 ppm for [UO22+] and 5.6 ppm for [Cu2+]. The variations of the 4f–4f spectral lines and the quenching/enhancement effects of the Ln-MOFs in the presence of the analytes were fully analyzed and discussed in terms of a combinatorial “host–guest” vibrational and “in-silico” interaction studies.


Sign in / Sign up

Export Citation Format

Share Document